

Training

Table of Contents

Chapter 1 : Exploring JavaScript in the Console

• Installing Atom

• Chrome Developer Tools

• Our first program

• Why do we use Chrome Developer Tools?

• Why do we use Atom as the text editor?

• Exercise

• Summary

Chapter 2 : Solving Problem Using JavaScript

• Variables

• Comments

• Arithmetic operators

• More operators and operations

• Summary

Chapter 3 : Introducing HTML and CSS

• HTML

• CSS

• JavaScript on an HTML page

• Summary

Chapter 4 : Diving a Bit Deeper

• Diving a Bit Deeper

• JavaScript methods

• HTML buttons and form

• If statement

• Switch-case

• Loops

• Summary

Chapter 5 : Ahoy! Sailing into Battle

• The HTML part

• The CSS part

• The JavaScript part

• The final code

• Summary

Chapter 6 : Exploring the Benefits of jQuery

• Exploring the Benefits of jQuery

• Installing jQuery

• Explaining the code

• Going deeper

• Summary

Chapter 7 : Introducing the Canvas

• Implementing canvas

• Adding JavaScript

• Drawing a rectangle

• Drawing a line

• A quick exercise

• Drawing a circle

• Draw linear gradient

• A quick exercise

• Let's make a clock!

• Summary

Chapter 8 : Tidying Up Your Code Using OOP

• Tidying up Your Code Using OOP

• Inheritance in JavaScript

• Encapsulation in JavaScript

• Dissecting Hangman

• Summary

Chapter 1 : Exploring JavaScript in the Console

1 | P a g e

Chapter 1. Exploring JavaScript in the Console

Before we start talking about lines of codes, objects, variables, and so on, we need to

know what JavaScript is. JavaScript is a programming language that is used to add

interactivities to the web pages and build web applications. Static websites are not very

popular these days, therefore, we use JavaScript to make our websites interactive.

Some people also call it a scripting language as it is an easy language and does not

require compilers like other languages. JavaScript was not designed as a general

purpose programming language, it was designed to manipulate web pages. You can write

a desktop application using JavaScript. JavaScript can also access your machine's

hardware. You can try making a desktop application with a software development

kit (SDK) such as PhoneGap for mobile or the Microsoft app SDK for desktop. The

JavaScript codes are interpreted on web pages and then run by a browser. Any modern

Internet browser, for example Firefox, Safari, Google Chrome, UC Browser, Opera, and

so on, supports JavaScript.

Note

A compiler is a computer program that processes codes and turns them to machine

language. Making a website interactive means adding features that are controlled by the

users to the website. For example, online registration forms, online calculator, and so on.

The Static website has fixed objects and contents and it displays the same information to

all the visitors.

Basically, JavaScript is included on an HTML page or written on a separate file that has

a .js extension. If you know nothing about HTML, don't worry as you will learn about it

in Chapter 3, Introducing HTML and CSS. So, where can you use JavaScript?

The answer is simple, you can do the following:

• You can create an active user interface.

• You can control web browsers.

• You can validate user inputs (if they are typed wrong).

• You can create custom web pages that can pop up on the browser, holding

information or images.

https://subscription.packtpub.com/book/web-development/9781785287176/1/ch01lvl1sec15/summary
browser console

Chapter 1 : Exploring JavaScript in the Console

2 | P a g e

• You can create dynamic pages without Common Gateway Interface (CGI). CGI

is used by the web servers to process a browser's information.

Note

The thing that you should remember is JavaScript is not Java, the programming

language developed by Sun Microsystem.

Throughout this book, we will use Google Chrome as the default browser and Atom as

the text editor.

If you do not have these two software already installed on your computer, it is

necessary to download and install them.

We will use the Atom text editor as it is a cross-platform editor, has a built-in package

manager, does smart autocompletion, and has a lot of other advantages.

Installing Atom

To install the Atom text editor, follow the https://atom.io/ link and press Download

Windows Installer, as shown in the following screenshot:

A file called AtomSetup.exe will start downloading.

https://atom.io/
Visual Studio Code

VSC

Chapter 1 : Exploring JavaScript in the Console

3 | P a g e

Click on the AtomSetup.exe file to get started with installing Atom.

Tip

Make sure that you give the administrative rights while installing it for better

performance.

Atom will launch automatically after the installation is completed.

If you are on another platform, use the Other platforms link:

• If you are a Mac user, go to the https://github.com/atom/atom/releases/latest link

and download the atom-X.X.X-full.nupkg file, where X.X.X is the version number of

Atom. Install it by double-clicking on the file.

• If you are an Ubuntu user, you can follow

the https://github.com/atom/atom/releases/latest link and download the atom-

amd64.deb file. After downloading it, launch your Terminal in the same folder, where

you placed the file after downloading it. Then, write the following code:

• sudo dpkg --install atom-amd64.deb

You may need the administrative password to install it. After the installation is

complete, you can run Atom from the Terminal by typing Atom and pressing Enter.

Chrome Developer Tools

Let's take a look at the Chrome Developer Tools that are used for JavaScript, specially

the console. Since Google Chrome is downloaded and installed on your machine, open

the Google Chrome browser, go to the menu (on the right-hand top corner), hover

on More tools and select Developer tools, as shown in the following screenshot:

https://github.com/atom/atom/releases/latest
https://github.com/atom/atom/releases/latest
F12

Right click, inspect
Menu burger

ctrl + U = view source code

Highlight

Highlight

Chapter 1 : Exploring JavaScript in the Console

4 | P a g e

You will see the following tools:

• Elements

• Network

• Sources

• Timeline

• Profiles

• Resources

• Audits

• Console

Our first program

Now, let's check whether JavaScript works on your machine.

Chapter 1 : Exploring JavaScript in the Console

5 | P a g e

From the tools, select Console. If you cannot find Console, click on the >> symbol, as

follows:

Once your console is open, type the following code and hit Enter on your keyboard:

document.write("Hello World");

If you can see the output on the left-hand side panel as shown in the following, then you

have successfully configured JavaScript on your browser:

The output that you will see is as follows:

Hello World

Congratulations!

Note

Downloading the example code

You can download the example code files for all the Packt books that you have

purchased from your account at http://www.packtpub.com. If you purchased this book

http://www.packtpub.com/
console.log('Hello World');

System.out.println("Hello World"); // Java

CTR + L = clear console

Highlight

Highlight

Highlight

Highlight

Chapter 1 : Exploring JavaScript in the Console

6 | P a g e

elsewhere, you can visit http://www.packtpub.com/support and register in order to have

the files e-mailed to you directly.

If you cannot see the text, check your code or install Google Chrome with administrative

rights.

You can also click on the gear button of your console. Check whether Disable

JavaScript is unchecked:

You can also debug your JavaScript codes using this tool.

If you type anything wrong; consider that you forgot the inverted commas of the Hello

World string, you will get the following errors:

http://www.packtpub.com/support
Highlight

Highlight

Chapter 1 : Exploring JavaScript in the Console

7 | P a g e

To speed up writing your codes, you may learn some keyboard shortcuts for both

console and Atom text editor.

Here are few keyboard shortcuts for console:

• Ctrl + L: Clear console

• Tab: Autocomplete common prefix

• Right arrow: Accept suggestion

• Ctrl + U: Clear console prompt

• Up/Down: Next/previous line

• Enter: Execute command

Here are few keyboard shortcuts for Atom text editor:

• Ctrl + B: Browse list of open files

• Ctrl +Alt + R: Reload Atom

• Ctrl +Shift + L: Change syntax highlighting

• Alt +Shift + S: Show available code snippets

• Ctrl +Shift + M: Markdown preview

• Ctrl +Alt + I: Toggle Developer Tools

• Ctrl + N: New file

• Ctrl +Shift + N: New Window

• Ctrl + P: Open file (type the name to perform a search)

• Ctrl + O: Open file

• Ctrl +Shift + O: Open folder

• Ctrl + S: Save

• Ctrl +Shift + S: Save as

• Ctrl + W: Close tab

• Ctrl +Shift + W: Close window

• Ctrl + G: Go to line

• Ctrl + L: Select line

• Ctrl +Shift + D: Duplicate line

• Ctrl +Shift + K: Delete line

• Ctrl + Up/Down: Move line up/down

• Ctrl + /: Toggle comment line

• Ctrl + Enter: New line below

Chapter 1 : Exploring JavaScript in the Console

8 | P a g e

• Ctrl + [/]: Indent/unindent selected lines

• Ctrl + J: Join lines

• Ctrl + Alt + .: Complete bracket

• Ctrl + M: Go to matching bracket

• Ctrl + Alt + M: Select code inside matching brackets

• Ctrl + Alt + /: Fold/unfold code

• Ctrl + Alt + F: Fold selected code

• Ctrl + Alt + [/]: Fold/unfold all code

• Ctrl + F: Find in current file

• Ctrl + Shift + F: Find in project

• F3: Find next

• Shift + F3: Find previous

• Ctrl + Enter: Replace all

• Ctrl + Alt + /: Use Regex in search

• Ctrl + Shift + =/-: Increase/decrease text size

• Ctrl + 0 (zero): Reset text size

• F11: Toggle fullscreen

Why do we use Chrome Developer Tools?

The following points the use of Chrome Developer Tools:

• Easy to see the errors

• Easy to edit/debug codes using the line numbers

• Real-time output (No need to refresh the page)

Why do we use Atom as the text editor?

The following points the use of Atom as the text editor:

• Zero-compromise combination of hackability and usability

• An open source text editor

• Every Atom window is essentially a locally-rendered web page

Chapter 1 : Exploring JavaScript in the Console

9 | P a g e

Exercise

To enhance your knowledge of JavaScript, write a program that will print your name.

Summary

In this chapter, we saw how to download Google Chrome and Atom, and install them.

You learned how to write your first code using Chrome Developer Tools (Console). You

have also learned a few keyboard shortcuts for Chrome Developer Tools and Atom text

editor.

You also learned what JavaScript is, why learning JavaScript is important, and how

JavaScript is different from other languages.

We can now jump in the world of JavaScript.

Your journey begins from Chapter 2, Solving Problems Using JavaScript.

https://subscription.packtpub.com/book/web-development/9781785287176/1/ch01lvl1sec15/summary

Chapter 2: Solving Problems Using JavaScript

10 | P a g e

Chapter 2. Solving Problems Using JavaScript

You have learned how to print something using JavaScript on console in the previous

chapter. Now, let's see the fundamentals behind JavaScript syntax, variables, arithmetic

operators, and comments.

In the computer world, there is nothing but data. You can read, modify, and create new

data; however, anything that isn't data simply does not exist. In JavaScript, we need to

handle data to develop a website.

To understand the basic syntax of JavaScript, first of all you need to know that JavaScript

is case sensitive. You cannot interchange lower case and upper case letters in

JavaScript. Therefore, when dealing with the JavaScript syntax, you need to remember

that writing the code is not the only important task, you must also watch the syntax

whether it's written correctly.

Let me show you an example. In the previous chapter, you have successfully

printed Hello World on your browser using the document.write(); syntax.

What would happen if you wrote Document.write("Hello World");? Yes! It won't run

successfully. You will get an error message. This kind of errors is known as Uncaught

SyntaxError.

A JavaScript statement is typically written on one line. You may finish your statement with

a semicolon or not. It is not mandatory to end a statement with a semicolon. However, it

is a good practice to add a semicolon after each statement.

Let's consider the following example:

document.write("Hello");

document.write("World");

document.write("!");

Its output will be as follows:

Highlight

Chapter 2: Solving Problems Using JavaScript

11 | P a g e

Note

JavaScript keywords (such as for, while, if, switch, case, and so on) are always in

lowercase. The build-in objects (such as Date, Math, Number, and so on) start with

uppercase.

Variables

We already know that the computer world has nothing but data.

There are different types of data (we call them data types), as follows:

• Your name is a kind of data

• Your age is data

• Your grade is also data

Yet, they all are different. What is the difference between them? Your name only contains

a group of characters or, as some people also call it, string. Your age is an integer type

data. Your grade is a float type data. The wonderful thing in JavaScript is that you do

not have to specify the data type before writing a variable's name.

Note

JavaScript allows working with three data types. Strings (for example, "This is an

example of string"), numbers (for example, 2015, 3.1415, and so on), and Boolean (for

example, true or false).

Chapter 2: Solving Problems Using JavaScript

12 | P a g e

Did we discuss variables? Well, you already know the data types. You will

need something to store your data. This something is called variable. In JavaScript, we

use var before the variable names. Remember that var starts with small letter.

Let's consider the following example:

var x;

var y;

var sum;

var name;

Let's say that we have 14 apples and 6 oranges. To store them in variables we will use

the following:

var apples = 14;

var oranges = 6;

The following example is not the same. Can you tell why?

var Apples = 14;

var apples = 14;

var APPLES = 14;

var appleS = 14;

Yes, JavaScript is case sensitive. All the variables are different here, though the values

of the variables are the same.

Now, let's do some coding. Previously, on console, you printed your name as

homework. I hope you did it without any trouble. How about we now print your name

differently using a variable? Assume that your name is Sherlock Holmes. What kind of

data is it?

You are right, it is string type. Usually for string type data, we put the string between two

quotes.

let name or
let $name,
let _name
let my123

Chapter 2: Solving Problems Using JavaScript

13 | P a g e

Let's consider the following example:

var name = "Sherlock Holmes";

var occupation = "Detective"

To print them using console, you need to type each statement and press Enter. Take a

look at the following image:

Note

Do not copy and paste the codes on the console. You might get a syntax error.

You will see an extra line appearing after you hit Enter, stating undefined. Don't worry

about this for now. It just returned a console log.

You stored the Sherlock Holmes string on the name variable and you

stored Detective on occupation. Every time you access name or occupation, you can

access the stated strings.

Consider that you want to print Sherlock Holmes on your screen. Just type the

following:

document.write(name);

After typing, hit Enter. You will see Sherlock Holmes is printed on the screen, as

follows:

Chapter 2: Solving Problems Using JavaScript

14 | P a g e

Type document.write(occupation); and hit Enter, as shown in the following screenshot:

You may be wondering why is there no space between Sherlock

Holmes and Detective. As, on the console, the history is not automatically removed

from the web page on the left-hand side and after you hit Enter for your second output

(occupation), the string places itself right after the previous string. This will always

happen, unless you clear your console using the Ctrl + L keyboard shortcut and reload

the web page pressing the key F5.

Note

Your stored variables will also be erased from the memory when you reload the web

page. Don't worry, you will be taught how to use your variables storing on a file in the

next chapter.

If you want to join two (or multiple) variables, you add a plus sign (+) between the two

variables, as follows:

Chapter 2: Solving Problems Using JavaScript

15 | P a g e

document.write(name+occupation);

document.write(occupation+name);

Can you tell me what will be output of these commands?

Yes, you are right. The output will be as follows:

Sherlock HolmesDetective

DetectiveSherlock Holmes

Note

Your output might be in one line on the web page. If you want to split the lines, add

a
 HTML tag. The simplest way to add this is to type document.write("
"); and

hit Enter. Your next output will be in a new line.

If you want to add any string (for example, a space) between the two strings other than

any variables, just type the following:

document.write(name+" "+occupation);

The output will be as follows:

Sherlock Holmes Detective

What will happen when you type the following code and hit Enter?

document.write("My name is "+name+" and I am a "+occupation);

Yes! You are absolutely right. The output will be as shown in the following:

My name is Sherlock Holmes and I am a Detective

Chapter 2: Solving Problems Using JavaScript

16 | P a g e

Now, add another variable on the console. Consider that Sherlock Holmes is 24 years

old. Do you remember what kind of data age is?

Yes, it is an integer type of number. Therefore, type the following code and hit Enter:

var age = 24;

You have the following three variables now:

• Name

• Occupation

• Age

Let's print the following output on the web page:

My name is Sherlock Holmes, I'm 24 years old and I am a Detective

What will our code be on the console?

The code is as follows:

document.write("My name is "+name+", I\'m "+age+" years old and I am a

"+occupation);

The output can be seen as follows:

Chapter 2: Solving Problems Using JavaScript

17 | P a g e

Tip

Printing quotations/inverted commas

If you want to print Shakespeare said, "To be, or not to be: that is the

question!" using the document.write(); syntax, you will probably type the following

code:

document.write("Shakespeare said, "To be, or not to be: that is the

question!"");

However, this will give you an error known as SyntaxError. To get rid of this error, you

need to use a backward slash (\) before the two inverted commas. The correct code will

be as follows:

document.write("Shakespeare said, \"To be, or not to be: that is the

question!\"");

The output will be as shown in the following:

Shakespeare said, "To be, or not to be: that is the question!"

The same rule applies for single inverted comma (').

Here is a quick exercise for you:

1. Suppose Tom has a cat (Lucy). The cat, Lucy, is 2.4 years old. Store the name, cat's

name, and its age on three different variables and print the following output using

console:

Chapter 2: Solving Problems Using JavaScript

18 | P a g e

Tom's cat Lucy is 2.4 years old.

2. Assume that you bought 4 pounds of apples. Each pound costs you $1.2. Store the

price and quantity of apples on two different variables and print the following output

using console:

I bought 4 pounds of apples. I had to pay $1.2 for each pound.

Comments

Suppose you have done a lot of coding and some logical operations, and used a

number of variables on JavaScript, and you want me to help you with the code if any

errors occur. When you send me the code, I will not know what you have typed unless I

have a clear knowledge of JavaScript or you have commented on the important lines.

A comment is basically a line of text or code that your browser ignores while running.

You can compare comments to sticky notes or reminder.

Let's consider the following example:

Var name = "Sherlock Holmes"; // This is a string

Var occupation = "Detective"; // This variable stores information

Var age = 14; // This is an integer type of data.

How do you make multiline comments? You mention the comment in the following

manner:

/*

 This is a multiline comment.

 The browser will ignore this.

 You can type any important information on your comment.

*/

Chapter 2: Solving Problems Using JavaScript

19 | P a g e

Your multiline comment should be between /* and */, as shown in the following

screenshot:

Arithmetic operators

In JavaScript, like other programming languages, we can do some arithmetic

operations. In your school, you might have already learned how to add two numbers,

subtract one number from another number, multiply two numbers, and divide a number

with another. You can do all these things in JavaScript with the help of a few lines of

code.

In JavaScript, we use the following arithmetic symbols for the operations:

Operator Description

+ To add

- To subtract

* To multiply

/ To divide

Chapter 2: Solving Problems Using JavaScript

20 | P a g e

Operator Description

% To find the reminder (called modulus operator)

Addition

Suppose you have two variables, x and y, with the values 3 and 4, respectively. What

should we do on the console to store the values on the variables?

Yes, we do the following:

var x = 3; // 3 is stored on variable x

var y = 4; // 4 is stored on variable y

Then, press Enter.

Take another variable that will hold the summation of x and y, as follows:

var z = x+y; // This syntax stores the sum of x and y on z

Can you tell me what will happen when we print z?

document.write(z);

Yes, you are correct, this will print 7, as shown in the following screenshot:

Subtraction

Chapter 2: Solving Problems Using JavaScript

21 | P a g e

To subtract a number from another, you need to put a minus sign (-) between them.

Let's consider the following example:

var x = 9; // 9 is assigned to the variable x.

var y = 3; // 3 is assigned to the variable y.

var z = x - y ; // This syntax subtracts y from x and stores on z.

document.write(z); // Prints the value of z.

The output of this code is 6, as shown in the following screenshot:

Multiplication

To multiply two numbers or variables that have integer or float type of data stored on

them, you just put an asterisk (*) between the variables or numbers.

Let's take a look at the following example:

var x = 6; // 6 is assigned to the variable x.

var y = 2; // 2 is assigned to the variable y.

var z = x * y; // For two numbers you can type z = 6 * 2 ;

document.write(z); // Prints the value of z

The output of this code is 12, as shown in the following screenshot:

Chapter 2: Solving Problems Using JavaScript

22 | P a g e

Division

To divide a number with another, you need to put a forward slash (/) between the

numbers.

Let's take a look at the following example:

var x = 14; // assigns 14 on variable x.

var y = 2; // assigns 2 on variable y.

var z = x / y; // divides x with y and stores the value on z.

document.write(z); // prints the value of z.

The output of this code is 7, as shown in the following screenshot:

Modulus

If you want to find the modulus of a number with another, you need to put a percentage

sign (%) between the numbers.

Let's consider the following example:

Chapter 2: Solving Problems Using JavaScript

23 | P a g e

var x = 34; // assigns 34 on the variable x.

var y = 3; // assigns 3 on the variable y.

var z = x % y ; // divides x with y and returns the reminder and stores

on the variable z

document.write(z);

The output of this code is 1, as shown in the following screenshot:

Tip

What does modulus (%) operator do?

Well, from your math class, you have already learned how to divide one number with

another. Say, you divide 10 by 2. The result will be 5, which is an integer type of

number. However, what will happen if you divide 10 by 3? The answer will not be an

integer. The value is 3.333333333333. You can also say that the answer is 3 and the

remainder is 1. Consider the following:

10 = 9 + 1;

That is, (9+1)/3

= 9/3+1/3

= 3 + 1/3;

Therefore, the remainder is 1. What modulus does is that it finds out the remainder and

returns it. Therefore, 10%3 = 1.

Chapter 2: Solving Problems Using JavaScript

24 | P a g e

Now, let's summarize all the arithmetic operators that we learned so far in one single

code.

Can you tell me the output of the following lines?

var x = 5 ;

var y = 4 ;

var sum = x + y ;

var sub = x - y ;

var mul = x * y ;

var div = x / y ;

var mod = x % y ;

document.write("The summation of x and y is "+ sum + "
") ;

document.write("The subtraction of x and y is " + sub + "
") ;

document.write("The multiplication of x and y is " + mul + "
");

document.write("The division of x and y is " + div + "
") ;

document.write("The modulus of x and y is " + mod + "
") ;

You will get the following output:

The summation of x and y is 9

The subtraction of x and y is 1

The multiplication of x and y is 20

The division of x and y is 1.25

The modulus of x and y is 1

This output can be seen in the following screenshot:

Chapter 2: Solving Problems Using JavaScript

25 | P a g e

I guess you nailed it. Now, let's explain them in the following:

• We assigned 5 and 4 to x and y, respectively

• We assigned the summation of x and y to the sum variable, the subtraction

of x and y to the sub variable, the multiplication of x and y to the mul variable, the

division of x and y to the div variable, and the modulus of x and y to the mod variable

• Then, we printed them using the document.write(); syntax

• We used a
 HTML tag to separate the output of each line

Consider the following example:

John has 56 pens. He wants to arrange them in seven rows. Each line will have an

equal number of pens. Write a code that will print the number of pens in each row.

(Hint: take two variables for the number of pens and number of rows, divide the number

of pens with the number of rows and store the value in a new variable.)

The sample output is as follows:

John will have to place XX pens on each line. // XX is the number of pens

More operators and operations

JavaScript has more operators other than those stated earlier. Let's go little bit deeper.

Chapter 2: Solving Problems Using JavaScript

26 | P a g e

Increment or decrement operators

If you have an integer and you want to increment it by 1 or any number, you can type

the following:

var x = 4; // assigns 4 on the variable x.

x = x + 1;

/* since x=4, and you are adding 1 with x, so the final value is 4 + 1 =

5, and 5 is stored on the same variable x. */

You can also increment your variable by 1, typing the following:

var x = 4; // assigns 4 on the variable x.

x++; // This is similar to x = x + 1.

What will you do if you want to increment your variable by more than 1? Well, you can

follow this:

var x = 4; // assigns 4 on the variable x.

x = x + 3; // Say, you want to increment x by 3.

/* since x = 4, and you are adding 3 with x, so the final value is 4 + 3

= 7, and 7 is stored on the same variable x. */

You can increment your variable by typing the following as well:

var x = 4; // assigns 4 on the variable x.

x += 3; // This is similar to x = x + 3.

Tip

Remember that you should not place a space between an operator (for example +, -, *,

/, and so on) and equal sign (=).

Chapter 2: Solving Problems Using JavaScript

27 | P a g e

The output will look similar to the following screenshot on the console:

What about the decrement operator? Yes, you are absolutely right. Decrement

operations are same as the increment operations. The only thing that changes is the

sign. Your addition (+) operator will be replaced by the subtraction operator (-). Let's

take a look at an example:

var x = 9; // assigns 9 on the variable x.

x = x - 1;

/* since x = 9, and you are subtracting 1 from x, so the final value is

9 - 1 = 8, and 8 is stored on the same variable x. */

You can also decrement your variable by 1 typing the following:

var x = 9; // assigns 9 on the variable x.

x--; // This is similar to x = x - 1.

Chapter 2: Solving Problems Using JavaScript

28 | P a g e

What will you do if you want to decrement your variable by more than 1? Well, you can

follow this:

var x = 9; // assigns 9 on the variable x.

x = x - 4; // Say, you want to decrement x by 4.

/* since x = 9, and you are subtracting 4 from x, so the final value is

9 - 4 = 5, and 5 is stored on the same variable x. */

You can also decrement your variable by typing the following:

var x = 9; // assigns 9 on the variable x.

x -= 4; // This is similar to x = x - 4.

The output of these codes can be seen in the following screenshot:

These type of operations are very important for logical operations in JavaScript. You will

learn about their uses in Chapter 4, Diving a Bit Deeper.

https://subscription.packtpub.com/book/web-development/9781785287176/2/ch02lvl1sec20/summary

Chapter 2: Solving Problems Using JavaScript

29 | P a g e

Assignment operators

An assignment operator assigns a value to an operator. I believe that you already know

about assignment operators, don't you? Well, you use an equal sign (=) between a

variable and its value. By doing this, you assigned the value to the variable.

Let's take a look at the following example:

var name = "Sherlock Holmes"

The Sherlock Holmes string is assigned to the name variable. You have already learned

about increment and decrement operators. Can you tell me what will the output of the

following codes be?

var x = 3;

x *= 2;

document.write(x);

The output will be 6.

Do you remember why this has happened?

The x *= 2; equation is similar to x = x * 2; as x is equal to 3, and later it is multiplied

by 2. The final number (3 x 2 = 6) is assigned to the same x variable. That's why we got

the following output:

Let's perform the following exercise:

What is the output of the following code?

Chapter 2: Solving Problems Using JavaScript

30 | P a g e

var w = 32;

var x = 12;

var y = 9;

var z = 5;

w++;

w--;

x*2;

y = x;

y--;

z%2;

document.write(" w = "+w+ ", x = "+x+ ", y = "+ y+", z = "+z);

We will get the following output:

w = 32, x = 12, y = 11, z = 5

This output can be seen in the following screenshot:

JavaScript comparison and logical operators

If you want to do something logical and compare two numbers or variables in

JavaScript, you need to use a few logical operators. The following are a few examples

of the comparison operators:

Chapter 2: Solving Problems Using JavaScript

31 | P a g e

Operator Description

== Equal to

!= Not equal to

> Greater than

< Less than

=> Equal to or greater than

<= Less than or equal to

The following are a few examples that use these operators:

You will learn more about the use of these operators in the following chapters.

Let's discuss a few bitwise logical operators and bitwise operators:

>=

Chapter 2: Solving Problems Using JavaScript

32 | P a g e

Operators Description

&& This means the AND operator. To check whether two or more

statements are true, we use this.

|| This means the OR operator. To check whether any

of the statement is true, we use this.

~ This means the NOT operator.

^ This means the XOR operator.

>> This means the Right Shift operator.

<< This means the Left Shift operator.

They might be hard for you to learn right now. Don't worry, you don't have to use them

now. We will use them in Chapter 4, Diving a Bit Deeper.

Summary

In this chapter, you learned about the JavaScript syntax. We discussed the JavaScript

variables and how to assign a value to a variable. You learned how to comment on the

code. You now know why commenting is important. You finally learned an important

topic: operators and operations. JavaScript, without using operators and logical

functions, will not be so rich nowadays. Therefore, learning about the logical operations

is the key to gain good knowledge of JavaScript.

I would like to suggest you to practice all the code in this chapter at home. You just type

them on the console, avoid copying and pasting the codes. This will hamper with your

learning. As a programmer must have a good typing speed, copying and pasting the

codes will not improve this skill. You may face problems in typing codes; however, you

will learn.

https://subscription.packtpub.com/book/web-development/9781785287176/2/ch02lvl1sec20/summary

Chapter 2: Solving Problems Using JavaScript

33 | P a g e

You can solve any arithmetic problem using JavaScript. You can also check whether

your logic is true or false on console. If you can do this, we can move on to the next

chapter, Chapter 3, Introducing HTML and CSS, where you will learn about HTML,

CSS, and so on.

https://subscription.packtpub.com/book/web-development/9781785287176/2/ch02lvl1sec20/summary

Chapter 3 : Introducing HTML and CSS

34 | P a g e

Chapter 3. Introducing HTML and CSS

You have already learned about JavaScript syntax, arithmetic operators, and comment

in the previous chapter. We used console for these purposes. Now, how about you

learn something interesting, which will pave the way for you to be a good JavaScript

programmer? In this chapter, we are going to study about the HyperText Markup

Language (HTML) syntax, Cascading Style Sheets (CSS) syntax, and how to use

JavaScript in an HTML page.

HTML is the source code of a web page. All the web pages that you load on your web

browser are built with HTML. Go to any website (for example, https://www.google.com)

and press Ctrl + U (on Mac, click command + U) on your keyboard, you will get the web

page's source code. This works on all modern web browsers, such as Firefox, Google

Chrome, UC, and so on.

The entire code that you will see is in HTML. You may also find a few lines with

JavaScript. Therefore, in order to understand the structure of a web page (the code

behind the page), you need to know about HTML. This is one of the easiest languages

on the web.

HTML

HTML is a markup language. What does it mean? Well, a markup language processes

and presents texts using specific codes for formatting, styling, and layout design. There

are a lot of markup languages (for example, Business Narrative Markup

Language (BNML), ColdFusion Markup Language (CFML), Opera Binary Markup

Language (OBML), Systems Biology Markup Language (SBML), Virtual Human

Markup Language (VHML), and so on); however, in modern web, we use HTML.

HTML is based on Standard Generalized Markup Language (SGML). SGML was

basically used to design document papers.

Note

https://www.google.com/
Highlight

Chapter 3 : Introducing HTML and CSS

35 | P a g e

There are a number of HTML versions. HTML 5 is the latest version. Throughout this

book, we will use the latest version of HTML.

Before you start learning HTML, let me ask you to think of your favorite website. What

does the website contain? A few web pages? You may see some text, few images, one

or two text fields, buttons, and some more elements on each of the web pages. Each of

these elements are formatted by HTML.

Let me introduce you to a web page. On your Internet browser, go

to https://www.google.com. You will see a page as shown in the following image:

The first thing you will see on the top of your browser is the title of the webpage. Let's

observe the page that we just loaded:

• Here, the marked box, 1, is the title of the web page that we loaded.

• The second box, 2, indicates some links or text.

• The word Google in the middle of the page is an image.

• The third box, 3, consists of two buttons.

https://www.google.com/

Chapter 3 : Introducing HTML and CSS

36 | P a g e

• Can you tell me what Sign in on the right-hand top of the page is? Yes, it is a

button.

Let's demonstrate the basic structure of HTML. The term tag will be used frequently to

demonstrate the structure.

An HTML tag is nothing but a few predefined words between the less than sign (<) and

greater than sign (>). Therefore, the structure of a tag is <WORD>, where WORD is the

predefined text that is recognized by the Internet browsers. This type of tag is called

open tag. There is another type of tag that is known as close tag. The structure of a

close tag is similar to </WORD>. You just have to put a forward slash after the less than

sign.

After this section, you will be able to make your own web page with some text using

HTML. The structure of an HTML page is similar to the following image. This image has

eight tags. Let's introduce all these tags with their activities, as shown in the following:

• 1: The tag <html> is an open tag and it closes at line 15 with the </html> tag.

o These tags tell your Internet browser that all the texts and scripts in these

two tags are HTML documents.

• 2: This is the <head> tag, which is an open tag and closes at line 7 with

the </head> tag.

o These tags contain the title, script, style, and metadata of a web page.

tag :
<html>
<body>
<p>

Highlight

Highlight

Highlight

Highlight

Highlight

Highlight

Highlight

Highlight

Highlight

Element

Chapter 3 : Introducing HTML and CSS

37 | P a g e

• 3: This is the <title> tag, and closes at line 4 with the </title> tag.

o This tag contains the title of the web page. The previous image had the

title Google. To see this on the web browser, you need to type the following:

<title> Google </title>

• 4: This is the close tag of the <title> tag.

• 5: This is the closing tag of the <head> tag.

• 6: This is the <body> tag, and closes at line 13 with the </body> tag.

Everything you can see on a webpage is written between these two tags. Every

element, image, link and so on are formatted here. To see This is a web page. on

your browser, you need to type the following:

<body>

This is a web page.

</body>

• 7: The </body> tag closes here.

• 8: The </html> tag is closes here.

Your first webpage

You just learned the eight basic tags of an HTML page. You can now make your own

web page. How? Why not try with me?

1. Open your text editor (You have already installed Atom in Chapter 1, Exploring

JavaScript in the Console of this book).

2. Press Ctrl + N, which will open a new untitled file as shown in the following image:

https://subscription.packtpub.com/book/web-development/9781785287176/3/ch03lvl1sec24/summary

Chapter 3 : Introducing HTML and CSS

38 | P a g e

3. Type the following HTML codes on a blank page:

4. <html>

5. <head>

6. <title>

7. My Webpage!

8. </title>

9. </head>

10. <body>

11. This is my webpage :)

12. </body>

</html>

13. Then, press Ctrl + Shift + S, which will tell you to save your code somewhere on

your computer:

Highlight

Highlight

Highlight

Chapter 3 : Introducing HTML and CSS

39 | P a g e

14. Type a suitable name on the File name: field. I would like to name my HTML

file webpage, therefore, I typed webpage.html. You may be wondering why I added an

extension (.html).

Note

As this is an HTML document, you need to add .html or .htm after the name

that you give your webpage. The .htm extension is an old form of .html. It

was limited to keep the file extension in three characters, therefore, people

used .htm instead of .html. You can also use .htm.

15. Press the Save button. This will create an HTML document on your computer. Go

to the directory, where you just have saved your HTML file.

Note

Remember that you can give your web page any name. However, this name

will not be visible on your browser. It is not the title of your web page. It is

good practice not to keep a blank space in your webpage's name. For

example, you want to name your HTML file This is my first webpage.html.

Your computer will face no problem showing the result on the Internet

Chapter 3 : Introducing HTML and CSS

40 | P a g e

browsers; however, when your website will be on a server, this name might

face a problem. Therefore, I would suggest you to keep an underscore (_)

where you need to add a space, such as This_is_my_first_webpage.html.

16. You will find a file similar to the following image:

17. Now, double-click on the file. You will see your first web page on the Internet

browser!

You typed My Webpage! between the <title> and </title> tags, which is why your

browser shows this in the first selection box, 1. You typed This is my webpage

:) between the <body> and </body> tags. Therefore, you can see the text on your

browser in the second selection box, 2.

Congratulations! You created your first web page!

Note

Chapter 3 : Introducing HTML and CSS

41 | P a g e

You can edit your codes and other texts of the webpage.html file by right-clicking on the

file and select Open with Atom. You must save (Ctrl + S) your codes and text before

reopening the file in your browser.

More HTML tags

There are a number of HTML tags to format text and objects of your web page. How

about we study a few of them now?

Description Syntax with example Result on browser

Bold Text This is bold This is bold

Italic Text <i> This is italic </i> This is italic

Underlined Text <u> Underline Text </u>

Deleted Text Delete me

Subscript Text CO₂ CO2

Superscript 3x10⁸ 3x108

Largest headline <h1> Hi Kids! </h1>

Smallest

headline

<h6> Hi Kids </h6>

Paragraph Text <p>This is a paragraph

</p>

This is a

paragraph

Break Tag This
is
a break; This

is

a break;

Chapter 3 : Introducing HTML and CSS

42 | P a g e

Note

There are six headline tags (<h1> to <h6>). You can add more than one tag for a text if

required. For example: <i><u> JavaScript </i></u> will have the following

output: . There is no specific order in which you should close the tags.

The best practice is to follow the sequence of open tags.

Coloring HTML text

To color an HTML text, we can type the following:

 I am green

You can type any standard color name between the two inverted commas (" "). You

can also use hex color code, as follows:

 I am green

Here, 32CD32 is the hex code of green. Look at the following image. The left-hand side is

the code, where we used both color name and hex code. On the right-hand side, we got

the output of our browser:

Note

A hex color code consists of six digits (it is a hexadecimal number). It starts with a

pound sign or hash sign (#) and we place the six digit hexadecimal number after it. The

margin

padding

attribute / property

Chapter 3 : Introducing HTML and CSS

43 | P a g e

hexadecimal number represents red, blue, and green colors' amount. Each two digits

represents 00 to FF (hexadecimal number). In the example, we used #32CD32 for

green. 32, CD, and 32 are the amount of red, blue, and green; respectively; in

hexadecimal.

If you don't know what a hexadecimal number is, remember that we use decimal

number where 10 digits (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9) are used. However, in

hexadecimal numbers, we use 16 digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F).

I would recommend you to use this website (http://html-color-codes.info/) to get your

favorite color's hex code without thinking about the hex code.

Linking HTML text

To hyperlink a text, we use an anchor tag as follows:

 Go to Google

The output of this code will be a link. If you click on the link, it will send you to the URL

that we used between the inverted commas (here, http://www.google.com).

If you want to open your link in a new tab of your browser, you need to add a target as

shown in the following:

 Go to Google

Here, target = "_blank" is an attribute that tells your browser to open the link in a new

tab. There are few more attributes. You can try them at home and let us know what you

see on your browser.

The other attributes are _parent, _self, and _top. The following image has the code that

has the _blank attribute. It opens http://google.com in a new tab. I would suggest you to

find what the other attributes do:

http://html-color-codes.info/
http://www.google.com/
http://google.com/

Chapter 3 : Introducing HTML and CSS

44 | P a g e

Inserting an image

Inserting an image on an HTML document is super easy. You just have to find the

image file extensions. The tag that we use to insert an image is as shown in the

following:

The src attribute is the source of your image. If your image is placed on the same

directory of the HTML file, you don't have to write the whole file source. Throughout this

book, we will keep our image files on the same directory, where we save our HTML

files.

Let's say that I have an image in the same folder where I saved the HTML document.

The name of the image is physics and its extension is .png. Now, to add this on the

HTML document, I need to add the following code:

.gif, png, jpg, jpeg, svg

Chapter 3 : Introducing HTML and CSS

45 | P a g e

Note

We use three types of images on an HTML document. Portable Network

Graphics (PNG), Graphics Interchange Format (GIF) and Joint Photographic

Experts Group (JPG or JPEG). To find your image's extension, right-click on your

image, go to Properties, and then, click on the Details tab to scroll down until you find

the Name field. You will find the image name with the extension. The procedure might

be different on your machine, depending on your operating system.

If you want to set the height and width of the image, you need to use two attributes, as

shown in the following:

< img src = "physics.png" width="100" height="40">

Here, 100 and 40 are the pixel of the image. In the previous versions of HTML, it was

defined as pixels or percentage.

Note

A pixel is the smallest unit of an image. Using percentage (%) is better if you want to see

the same ratio of the image on different screen sizes, otherwise, you can use the pixel

(px) unit.

The output will look similar to the following:

unit in pixel

Chapter 3 : Introducing HTML and CSS

46 | P a g e

There are more HTML tags; however, we have covered most of the tags that we use to

build a web page. Can you imagine the output of the following codes?

<html>

 <head>

 <title>

 Example

 </title>

 </head>

 <body>

 <h1> This is a headline </h1>

 <h2> This is a headline </h2>

 <h3> This is a headline </h3>

 <h4> This is a headline </h4>

 <h5> This is a headline </h5>

 <h6> This is a headline </h6>

Chapter 3 : Introducing HTML and CSS

47 | P a g e

 This is a bold text. But <i>This is an italic text</i>. We

can <u> underline</u> our text. Go to

Google

 This is colorful text

 </body>

</html>

The output will look similar to the following image:

Chapter 3 : Introducing HTML and CSS

48 | P a g e

CSS

If you want to make your web page beautiful, you must know CSS. CSS is a language

that allows you to describe your web pages, color your texts, change the font of the text,

and modify the layout of the web page.

There are two parts of a CSS syntax:

• Selector

Chapter 3 : Introducing HTML and CSS

49 | P a g e

• Decorator

Before proceeding with learning CSS, you need to introduce yourself with an HTML tag:

<style>

</style>

This tag should be kept between the <head></head> tags. Therefore, the structure of the

code will be as shown in the following:

<html>

 <head>

 <title>

 </title>

 <style>

 // your codes will be typed here

 </style>

 </head>

 <body>

 </body>

</html>

The CSS codes will be written in between the <style></style> tags.

To format your text, you need to remember the tag that you used for the text. Consider

that you have a text in the <h1></h1> tag in the body of the HTML document, as follows:

<h1> This is an example of HTML text. </h1>

To apply CSS, you need to type the following between the <style> </style> tags:

<html>

Chapter 3 : Introducing HTML and CSS

50 | P a g e

 <head>

 <title>

 </title>

 <style>

 h1 {

 color:green;

 text-decoration: underline;

 text-align: center;

 }

 </style>

 </head>

 <body>

 <h1>This is an example of HTML text </h1>

 </body>

</html>

The output of the code will be as follows:

selector. ada 10 rules

Decorator

Chapter 3 : Introducing HTML and CSS

51 | P a g e

Look at the code carefully. We used the following CSS for the text in the <h1></h1> tags:

 h1 {

 color:green;

 text-decoration: underline;

 text-align: center;

 }

Here, we used a few CSS syntaxes (color, text-decoration, and so on). There are a

number of CSS syntaxes, also called property (and every property may contain more

than one value).

JavaScript on an HTML page

Chapter 3 : Introducing HTML and CSS

52 | P a g e

You have already learned how to print something using JavaScript on console. How

about we do it on an HTML page? Before doing this, let's introduce an HTML

tag, <script></script>. Our JavaScript code will be between these tags.

As there are lots of scripting languages, we need to define what kind of language we

are using between these tags. Therefore, we type the following:

<script type = "text/javascript">

 // Our JavaScript Codes will be here.

</script>

Let's see an example. In the previous chapter, you learned how to do basic operations

using JavaScript on console. Now, we are going to perform a few operations between

the <script></script> tags in an HTML page. Look at the following code carefully:

<html>

 <head>

 <title>

 JavaScript Example

 </title>

 </head>

 <body>

 <script type="text/javascript">

 var x = 34;

 var y = 93;

 var sum = x+y;

 document.write("The sum of "+x+" and "+y+" is "+sum);

 </script>

 </body>

</html>

this is optional

Chapter 3 : Introducing HTML and CSS

53 | P a g e

The output of the code will be as follows:

I hope that you could guess the output of the codes by yourself.

Summary

In this chapter, you learned HTML, CSS, and their syntaxes and usages. We also

covered how to implement JavaScript on an HTML document. You are now able to build

your own web page and make it wonderful using JavaScript. I would suggest you not to

skip any part of this chapter in order to have a better understanding of the next

chapter, Chapter 4, Diving a Bit Deeper.

https://subscription.packtpub.com/book/web-development/9781785287176/3/ch03lvl1sec24/summary

Chapter 4 : Diving a Bit Deeper

54 | P a g e

Chapter 4. Diving a Bit Deeper

In most of the JavaScript programs, which we learned so far, the lines of code were

executed in the same order in which they appeared in the program. Each code was

executed only once. Thus, the code did not include tests to determine if the conditions

were true or false or we did not perform any logical statements.

In this chapter, you are going to learn some logical programming. You will learn about

the following topics:

• Loops

• If statement

• Switch case

You already know how to embed JavaScript codes on an HTML document. Before

starting this chapter, you will learn a few HTML tags and JavaScript methods. These

methods and tags will be used throughout the book.

Note

In object-oriented programming, we don't directly perform any operations on the data

from outside an object; we ask an object to perform the operation by passing one or

multiple parameters. This task is called an object's method.

JavaScript methods

In the previous chapters, you learned how to print something using document.write().

Now, you will learn something more.

We will check the methods on both console and HTML document, as follows:

• To show an alert or a pop-up box using JavaScript, we use the following method:

alert("Hello World");

function / method / subroutine

Highlight

Highlight

Highlight

Chapter 4 : Diving a Bit Deeper

55 | P a g e

Type this on the console and press Enter, you will see a pop-up box saying Hello

World:

You can write your code to show a pop-up box similar to the following on an HTML

document:

<html>

 <head>

 <title>Alert</title>

 </head>

 <body>

 <script type="text/javascript">

 alert("Hello World");

 </script>

 </body>

</html>

The output will be as follows:

Chapter 4 : Diving a Bit Deeper

56 | P a g e

• If you want to take information from users, you need to use a prompt box to do this.

Consider the following for example:

o You want to take input of the username and print it on the main web page.

o You can do this using the window.prompt() method.

o The structure of window.prompt() is similar to the following:

window.prompt("What is your name?"); // You can type anything

between the inverted commas.

o Now, you need to store the information on a variable. You already know how

to do this from the previous chapters. Type the following and press Enter:

var name = window.prompt("what is your name?");

Chapter 4 : Diving a Bit Deeper

57 | P a g e

o After running this code on console, you will be asked to input something on

a textbox. After typing your information, you need to press the OK button.

Your information is now stored in the name variable:

o If you want to print the variable on your web page, you can use

the document.write(); method, as follows:

document.write("Hello "+name+"!");

o The output of these steps can been seen in the following screenshot:

o The codes on an HTML document will be as shown in the following:

o <html>

o <head>

o <title>Prompt</title>

o </head>

o <body>

o <script type="text/javascript">

o var name = window.prompt("What is your name?");

Chapter 4 : Diving a Bit Deeper

58 | P a g e

o document.write("Hello "+name+"!");

o </script>

o </body>

</html>

HTML buttons and form

In the last chapter, you learned about a few HTML tags. Now, we will study a few tags

that will make learning HTML more interesting.

Buttons

If you want to add buttons to your HTML web page, you can use

the <button></button> tags. The structure of the tags is as follows:

<button type="button">Click Here </button>

If you want to make your button do something, for example, open an URL; you can

consider the following code:

<button type="button">Click Me </button>

The output of the code will be as follows:

Chapter 4 : Diving a Bit Deeper

59 | P a g e

Form

In HTML, we use form to represent a document section that contains interactive controls

to submit information to a web server. The basic structure of HTML form is as shown in

the following:

<form>

 User ID: <input type = "text">

 Password: <input type ="password">

</form>

The output of the code will be as follows:

Js Validation (optional)

Back-end Validation (compulsory)

Chapter 4 : Diving a Bit Deeper

60 | P a g e

Let's dive little bit deeper now!

If statement

Let's say John has 23 apples and Tom has 45 apples. We want to check who has more

apples using JavaScript programming. We need to make our browser understand the if

statement.

Note

The if statement compares two variables.

To check our condition, we need to declare the two variables containing the number of

apples, as follows:

var john = 23;

var tom = 45;

Chapter 4 : Diving a Bit Deeper

61 | P a g e

To check which number is bigger, we can apply the if statement as shown in the

following:

if(john > tom)

{

 alert("John has more apples than tom");

}

Let's say that we do not know which variable is bigger. Then, we need to check both the

variables. Therefore, we need to include the following codes to our program:

if(tom > john)

{

 alert("Tom has more apples than John");

}

The whole code in an HTML page will be as follows:

<html>

 <head>

 <title>

 If statement

 </title>

 </head>

 <body>

 <script type="text/javascript">

 var john = 23;

 var tom = 45;

 if(john > tom){

 alert("John has more apples than Tom");

Chapter 4 : Diving a Bit Deeper

62 | P a g e

 }

 if(tom> john){

 alert("Tom has more apples than John");

 }

 </script>

 </body>

</html>

The output will be as follows:

You learned about the conditional operators in the previous chapters. In if statement,

you can use all of them. Here are a few examples with comments:

If(tom => john){

//This will check if the number of apples are equal or greater.

}

If(tom <= john)

{

//This will check if the number of apples are equal or less.

>=

Chapter 4 : Diving a Bit Deeper

63 | P a g e

}

If(tom == john)

{

//This will check if the number of apples are equal.

}

To check multiple conditions, you need to use OR (||) or AND (&&).

Consider the following examples:

If(john == 23 || john => tom)

{

/* This will check if John has 23 apples or the number of John's apple

is equal to or greater than Tom's. This condition will be full filled if

any of these two conditions are true.

*/

}

If(tom == 23 && john <= tom)

{

/* This will check if Tom has 23 apples or the number of john's apple is

less than Tom's or equal. This condition will be full filled if both of

these two conditions are true.

*/

}

Switch-case

Chapter 4 : Diving a Bit Deeper

64 | P a g e

If you have more than three conditions, it is good practice to use the switch-

case statement. The basic structure of switch-case is as shown in the following:

switch (expression) {

 case expression1:

 break;

 case expression2:

 break;

 case expression3:

 break;

//-------------------------------

//-------------------------------

// More case

//-------------------------------

// -------------------------------

 default:

}

Every case has a break. However, the default does not need a break.

Consider that Tom has 35 pens. His friends John, Cindy, Laura, and Terry have 25, 35,

15, and 18 pens, respectively. Now, John wants to check who has 35 pens. We need to

compare the number of Tom's pens with everyone's pens. We can use switch-case for

this type of case. The code will be as follows:

<html>

 <head>

 <title>

 Switch-Case

 </title>

Chapter 4 : Diving a Bit Deeper

65 | P a g e

 </head>

 <body>

 <script type="text/javascript">

 var Tom = 35;

 switch (Tom) {

 case 25: //Number of John's pens

 document.write("John has equal number of pens as Tom");

 break;

 case 35: //Number of Cindy's pens

 document.write("Cindy has equal number of pens as Tom");

 break;

 case 15: //Number of Laura's pens

 document.write("Laura has equal number of pens as Tom");

 break;

 case 18: //Number of Terry's pens

 document.write("Terry has equal number of pens as Tom");

 break;

 default:

 document.write("No one has equal pens as Tom");

 }

 </script>

 </body>

</html>

The output will be as follows:

Chapter 4 : Diving a Bit Deeper

66 | P a g e

Note

Now, change the value of second case (35) to other and check your result.

Exercise

1. Suppose you need to go to school every day except Saturday and Sunday. Write a

code, where you will input today's date number and the web page will show you

whether you need to go to school or not. (Hint: use a switch case.)

2. Consider that you have a garden and you water all the plants on even days of the

month. Write a code that will show you whether you will water your plants on that

day. (Hint: use the if condition and modulus operator (%).)

Loops

In this paragraph, we will learn something interesting called loop.

Consider that you need to print a line 100 times using JavaScript. What you will do?

Chapter 4 : Diving a Bit Deeper

67 | P a g e

You can type document.write("The line I want You to Write"); 100 times in your

program or you can use loop.

The basic use of loop is to do something more than one time. Say, you need to print all

the integers of 1 + 2 + 4 + 6 +…………+100 series upto 100. The calculation is the

same, you only need to do it multiple times. In these cases, we use loop.

We will discuss two types of loops, namely for loop and while loop.

The for loop

The basic structure of the for loop is as follows:

for(starting ; condition ; increment/decrement)

{

 statement

}

The starting parameter is the initialization of your loop. You need to initialize the loop in

order to start it. The condition parameter is the key element to control the loop.

The increment/decrement parameter defines how your loop will increase/decrease.

Let's see an example. You want to print javascript is fun 10 times. The code will be as

shown in the following:

<html>

 <head>

 <title>For Loop</title>

 </head>

 <body>

 <script type="text/javascript">

 var java;

 for(java=0;java<10;java++){

for(int java=0; java<10; java++)

Chapter 4 : Diving a Bit Deeper

68 | P a g e

 document.write("javascript is fun"+"
");

 }

 </script>

 </body>

</html>

The output will be similar to the following:

Yes! You printed the line 10 times. If you look at the code carefully, you will see the

following:

• We declared a variable named java

• In the for loop, we initialized 0 to its value

• We added a java<10 condition that made the browser count from 0 to 10

• We incremented the variable by 1; that's why we added java++

Exercise

1. Write a code using JavaScript that will print the following output:

2. I have 2 apples.

3. I have 4 apples.

Chapter 4 : Diving a Bit Deeper

69 | P a g e

4. I have 6 apples.

5. I have 8 apples.

6. I have 10 apples.

7. I have 12 apples.

8. I have 14 apples.

9. I have 16 apples.

10. I have 18 apples.

I have 20 apples.

11. Write a code that will print all the even numbers from 2 to 500.

The while loop

You have already have learned how to execute something multiple times using the

for loop. Now, we will learn another loop known as the while loop. The structure of while

loop is as follows:

initialize;

while(condition){

 statement;

 increment/decrement;

}

The codes for the previous example will be like the following:

<html>

 <head>

 <title>For Loop</title>

 </head>

 <body>

Chapter 4 : Diving a Bit Deeper

70 | P a g e

 <script type="text/javascript">

 var java = 0;

 while(java < 10){

 document.write("javascript is fun"+"
");

 java++;

 }

 </script>

 </body>

</html>

The output will be the same as the for loop.

Exercise

1. Write a code that will print all the odd values from 1 to 600 using the while loop.

(Hint: use the modulus operator.)

2. Write a code that will print the following output:

3. 5 x 1 = 5

4. 5 x 2 = 10

5. 5 x 3 = 15

6. 5 x 4 = 20

7. 5 x 5 = 25

8. 5 x 6 = 30

9. 5 x 7 = 35

10. 5 x 8 = 40

11. 5 x 9 = 45

5 x 10 = 50

Summary

Chapter 4 : Diving a Bit Deeper

71 | P a g e

In this chapter, you learned logical operations using JavaScript. You learned loops,

conditional operation, and other HTML tags.

We need to focus on this chapter as we have discussed the most important attributes in

JavaScript here. You can become a JavaScript master if you practice this chapter and

the last three chapters. I recommend you not to go further unless you have a good

knowledge all the four chapters. If you have already learned about all the topics that we

discussed earlier, let's move on to Chapter 5, Ahoy! Sailing into Battle.

https://subscription.packtpub.com/book/web-development/9781785287176/4/ch04lvl1sec30/summary

Chapter 5: Ahoy! Sailing into Battle

72 | P a g e

Chapter 5. Ahoy! Sailing into Battle

In this chapter, we are going to develop a full game using HTML, CSS, and JavaScript.

We will focus on the JavaScript coding, therefore, we will not care about the graphics of

the game. We will code a game named Battleship. Many of you have heard of it before.

This is a memory game. Your imagination and intuition will help you to win the game.

There are a few variations for playing the game.

Let's discuss how the game looks. There are a few square-shaped geometrical objects

connected to each other as shown in the following. The number of rows and columns

need to be equal:

The rows and columns are usually named with the help of number system or alphabets.

Let's say that the rows are 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10. The columns

are A, B, C, D, E, F, G, H, I, and J. We can name them by either numbers or alphabets:

A B C D E F G H I J

1

2

3

4

5

6

7

8

9

10

Chapter 5: Ahoy! Sailing into Battle

73 | P a g e

It is a two player game. The following are its rules:

• Both the players will secretly place their ships (there can be different types of boats

or water vehicles) on their matrices/grids.

• The players can put their ships vertically or horizontally; however, not diagonally.

• The players must place all their ships on the grid before they start playing.

• Their ships cannot overlap each other's.

• When all the ships are placed, the players cannot move their ships from the grid.

• After placing all the ships, the first player will state a coordinate of the second

player and if there is a ship belonging to the second player, the ship will blow.

• Then, the second player will state a coordinate of the first player. If there is a ship

belonging to the first player, it will blow.

• The coordinate may look similar to A2, B2, D5, and so on. The first alphabet will be

the x axis of the grids and the number will represent y axis of the grid.

• The player that blows all the ships of the opponent will win.

The following figure shows few ships placed on the grid:

Chapter 5: Ahoy! Sailing into Battle

74 | P a g e

Now, we will head to the programming part of the game.

We will stick to the following rules so that our game does not become difficult to code:

1. There will be one ship belonging to both the players.

2. The ship will occupy four parts of the grid.

3. A player will have to input both the x and y axes coordinates at the prompt.

4. The grid will be 9 x 9.

5. The player will have to put h or v for the horizontal or vertical position of the ship.

6. To simplify the drawing, we will put dots (.) on the position of the grids. The grids

will look similar to the following image:

Chapter 5: Ahoy! Sailing into Battle

75 | P a g e

7. We will need a Fire button to start the game.

The HTML part

The HTML part will look similar to the following code:

<html>

 <head>

 </head>

 <body>

 <h1> Battleship Game </h1>

 </body>

 <style>

// We will code in CSS here

 </style>

 <script type = "text/javascript">

//We will code in JavaScript here

 </script>

</html>

The output of the code will be as shown in the following image:

Chapter 5: Ahoy! Sailing into Battle

76 | P a g e

The CSS part

We use a CSS coding in the <style></style> tags for the body. As we will heed on the

coding in JavaScript only, we will not bother about the visual part of the game. To make

the body of the game colorful, we will use the following code:

 <style>

 body {

 background-color: #eff;

 }

 </style>

The JavaScript part

This part is the main part of our game, we will pay attention to this part the most. We will

write all our codes in the <script></script> tags.

For the grids, we will need a two dimensional array. We will take a game variable to store

the data as follows:

Chapter 5: Ahoy! Sailing into Battle

77 | P a g e

Note

Many programs may require the processing of multiple data items that have common

characteristics. In such situations, it is often convenient to place the data items in an

array, where they will all share the same name. The individual data can be characters,

floats, integers, and so on. However, they must all be of the same type and class.

var game = [[".", ".", ".", ".", ".", ".", ".", ".", "."],

 [".", ".", ".", ".", ".", ".", ".", ".", "."],

 [".", ".", ".", ".", ".", ".", ".", ".", "."],

 [".", ".", ".", ".", ".", ".", ".", ".", "."],

 [".", ".", ".", ".", ".", ".", ".", ".", "."],

 [".", ".", ".", ".", ".", ".", ".", ".", "."],

 [".", ".", ".", ".", ".", ".", ".", ".", "."],

 [".", ".", ".", ".", ".", ".", ".", ".", "."],

 [".", ".", ".", ".", ".", ".", ".", ".", "."],

];

We will take a variable to display the two dimensional array on the HTML page:

var board = document.createElement("PRE");

We will now append this on the body and create a button:

document.body.appendChild(board);

var button=document.createElement("BUTTON");

This button will call the fire function (we will write the function later.):

button.onclick = fire;

Now, we will place the button on the body part:

Chapter 5: Ahoy! Sailing into Battle

78 | P a g e

var t=document.createTextNode("Fire!");

 document.body.appendChild(button);

 button.appendChild(t);

Let's make a function to draw the board:

 function drawBoard() {

 var boardContents = "";

 var i;

 var j;

 for (i=0; i<9; i++) {

 for (j=0; j<9; j++) {

 boardContents = boardContents + game[i][j]+" ";

 // Append array contents for each board square

 }

 boardContents = boardContents + "
";

 // Append a line break at the end of each horizontal line

 }

 return boardContents;

 // Return string representing board in HTML

 }

Now, put draw the board on the HTML page by writing the following code:

board.innerHTML = drawBoard();

We will ask the player where he wants to place his ship using the prompt() function:

var x=prompt("Where would you like to place your ship? Enter an X

coordinate: (0-8)");

Chapter 5: Ahoy! Sailing into Battle

79 | P a g e

 var y=prompt("Where would you like to place your ship? Enter a Y

coordinate: (0-8)");

 var direction=prompt("Place (h)orizontally, (v)ertically");

 x = Number(x); // Convert the string returned by "prompt" into a

number

 y = Number(y); // Convert the string returned by "prompt" into a

number

If the player chooses the horizontal orientation for their ship, we need to replace the

dots by writing the following code:

if (direction[0] == "h") {

 var c;

 for (c = x; c < (x + 4); c++)

 {

 game[y][c] = '#';

 }

}

If the player chooses the vertical orientation for their ship, we need to replace the dots

by writing the following code:

if (direction[0] == "v") {

 var c;

 for (c = y; c < (y + 4); c++)

 {

 game[c][x] = '#';

 }

}

Chapter 5: Ahoy! Sailing into Battle

80 | P a g e

We need to redraw the board after placing the ship, as follows:

 board.innerHTML = drawBoard();

Lets create the fire() function.

Our fire() function will be as follows:

function fire() {

//We will write codes here.

}

When the fire() function is called, we need to take input from the player as shown in

the following:

 var fireX=prompt("Where would you like to fire? Enter an X coordinate:

(0-8)");

 var fireY=prompt("Where would you like to fire? Enter a Y coordinate:

(0-8)");

Convert the inputs into numbers, as follows:

 fireX = Number(fireX);

 // Convert the string returned by "prompt" into a number

 fireY = Number(fireY);

 // Convert the string returned by "prompt" into a number

If the input does not match with the # character, we will print You Missed. using the

following code:

 if (game[fireY][fireX] == ".") {

 // Check if the specified coordinate is occupied by the cruiser

 alert("You Missed.");

Chapter 5: Ahoy! Sailing into Battle

81 | P a g e

 }

If the input hits the ship, we will print few messages and draw the board again:

 else if (game[fireY][fireX] == "*") {

 alert("You already hit the ship there.");

 } else {

 alert("Kaboom! You hit a ship");

 game[fireY][fireX] = "*";

 board.innerHTML = drawBoard();

 // Redraw board with hit marker at specified coordinate

 }

Now, we need to check whether there is any ship remaining on the board. We will use

the following code:

 var shipfound;

 var i;

 var j;

 // Check if there are any ships remaining on the board

 for (i=0; i<9; i++) {

 for (j=0; j<9; j++) {

 if (game[i][j] != "." && game[i][j] != "*") {

 shipfound = true;

 // Taking a boolean data type to set it if a ship is found

 }

 }

 }

If no ship is left, we will end the game:

Chapter 5: Ahoy! Sailing into Battle

82 | P a g e

if (!shipfound) {

 // If no ships are found end the game

 alert("All ships have been sunk. Well done Captain! Game over");

 document.body.removeChild(button);

 // Remove the fire button from the page after game over

}

The final code

Our final codes will look similar to the following:

<html>

 <head>

 </head>

 <body>

 <h1> Battleship Game </h1>

 </body>

 <style>

 body {

 background-color: #eff;

 }

 </style>

 <script>

 var game = [[".", ".", ".", ".", ".", ".", ".", ".", "."],

 [".", ".", ".", ".", ".", ".", ".", ".", "."],

 [".", ".", ".", ".", ".", ".", ".", ".", "."],

 [".", ".", ".", ".", ".", ".", ".", ".", "."],

Chapter 5: Ahoy! Sailing into Battle

83 | P a g e

 [".", ".", ".", ".", ".", ".", ".", ".", "."],

 [".", ".", ".", ".", ".", ".", ".", ".", "."],

 [".", ".", ".", ".", ".", ".", ".", ".", "."],

 [".", ".", ".", ".", ".", ".", ".", ".", "."],

 [".", ".", ".", ".", ".", ".", ".", ".", "."],

];

 var board = document.createElement("PRE");

 // preparing the HTML <pre> element to display the board on the page

 document.body.appendChild(board);

 var button=document.createElement("BUTTON");

 // Preparing the "Fire! button to allow the player to fire at the

ship

 button.onclick = fire; // Clicking the button calls the fire()

function

 var t=document.createTextNode("Fire!");

 document.body.appendChild(button);

 button.appendChild(t);

 function drawBoard() {

 var boardContents = "";

 var i; var j;

 for (i=0; i<9; i++) {

 for (j=0; j<9; j++) {

 boardContents = boardContents + game[i][j]+" ";

 // Append array contents for each board square

 }

 boardContents = boardContents + "
";

 // Append a line break at the end of each horizontal line

Chapter 5: Ahoy! Sailing into Battle

84 | P a g e

 } return boardContents;

 // Return string representing board in HTML

 }

 board.innerHTML = drawBoard();

 // Display the board on the page using the above function

 var x=prompt("Where would you like to place your cruiser? Enter an X

coordinate: (0-8)");

 var y=prompt("Where would you like to place your cruiser? Enter a Y

coordinate: (0-8)");

 var direction=prompt("Place (h)orizontally, (v)ertically");

 x = Number(x); // Convert the string returned by "prompt" into a

number

 y = Number(y); // Convert the string returned by "prompt" into a

number

 if (direction[0] == "h") {

 var c;

 for (c = x; c < (x + 4); c++)

 {

 game[y][c] = '4';

 }

 }

 // Draw cruiser vertically

 if (direction[0] == "v") {

 var c;

 for (c = y; c < (y + 4); c++)

 {

 game[c][x] = '4';

Chapter 5: Ahoy! Sailing into Battle

85 | P a g e

 }

 }

 board.innerHTML = drawBoard(); // Redraw board with cruiser added

 // Function for firing a shot when the "Fire! button is pressed

 function fire() {

 var fireX=prompt("Where would you like to fire? Enter an X

coordinate: (0-8)");

 var fireY=prompt("Where would you like to fire? Enter a Y

coordinate: (0-8)");

 fireX = Number(fireX);

 // Convert the string returned by "prompt" into a number

 fireY = Number(fireY);

 // Convert the string returned by "prompt" into a number

 if (game[fireY][fireX] == ".") {

 // Check if the specified coordinate is occupied by the cruiser

 alert("Missed.");

 }

 else if (game[fireY][fireX] == "*") {

 alert("You already hit the ship there.");

 } else {

 alert("Kaboom! You hit a ship");

 game[fireY][fireX] = "*";

 board.innerHTML = drawBoard();

 // Redraw board with hit marker at specified coordinate

 }

 var shipfound;

 var i;

Chapter 5: Ahoy! Sailing into Battle

86 | P a g e

 var j;

 // Check if there are any ships remaining on the board

 for (i=0; i<9; i++) {

 for (j=0; j<9; j++) {

 if (game[i][j] != "." && game[i][j] != "*") {

 shipfound = true;

 // Set to true if a ship is found

 }

 }

 }if (!shipfound) {

 // If no ships are found end the game

 alert("All ships have been sunk. Well done Captain! Game over");

 document.body.removeChild(button);

 // Remove the fire button from the page after game over

 }

 }

 </script>

</html>

If you run the preceding code, you will see the following prompt:

Chapter 5: Ahoy! Sailing into Battle

87 | P a g e

Let's play the game that we created. The first player has to place his ship. He has to

input the coordinates of the ship.

Consider that we input 3 on the x axis and 2 on the y axis. Place our ship on the vertical

orientation. The game screen will look as shown in the following:

You can see that your ship is placed. Now, you can shoot your opponent (computer) by

pressing the Fire button. You will be asked to input the coordinates of the grid, where

Chapter 5: Ahoy! Sailing into Battle

88 | P a g e

you want to shoot. If you miss a shot, you will see a message that we coded, You

Missed.

I hope that you are able to play the game that you built.

Congratulations!

If you want to develop your game more (such as enhance the graphics, number of

ships, and so on), you only need to develop CSS and JavaScript.

Now, we will see a better code for the Battleship game, as shown in the following:

1. Make a js folder anywhere in your computer.

2. In the js folder, place the three files that are included in this

chapter: battleship.js, functions.js, and jquery.min.js.

3. Outside the js folder, place the battleship.css and index.html files.

Open the index.html file in a Notepad, you will see the following code:

<html>

 <head>

 <title>Battleship</title>

 <meta name="viewport" content="width=device-width" />

 <link href="battleship.css" rel="stylesheet" type="text/css"/>

 </head>

 <body>

 <h1>BATTLESHIP</h1>

 <div class="game-types">

 <h2 class='game-choice'>Choose a game type</h2>

 <dl class="game-description">

 <dt>Standard</dt>

 <dd>Classic Battleship with randomly placed ships</dd>

Chapter 5: Ahoy! Sailing into Battle

89 | P a g e

 <dt>Custom</dt>

 <dd>Choose any 5 ships and place them where you like. The

computer will have the same 5 ships, randomly placed</dd>

 </dl>

 <div class='button-wrapper'>

 <button class="standard">Standard</button>

 <button class="custom">Custom</button>

 </div>

 </div>

 <div class='ship-picker'>

 <h2>Pick 5 Ships</h2>

 <h3>Selected ships</h3>

 <ul class="ship-list">

 <p></p>

 <div class='remove'>X</div>

 <p></p>

 <div class='remove'>X</div>

 <p></p>

 <div class='remove'>X</div>

 <p></p>

Chapter 5: Ahoy! Sailing into Battle

90 | P a g e

 <div class='remove'>X</div>

 <p></p>

 <div class='remove'>X</div>

 <ul class='ship-choices button-wrapper'>

 <li class="ship-choice">Carrier

 <li class="ship-choice">Battleship

 <li class="ship-choice">Submarine

 <li class="ship-choice">Cruiser

 <li class="ship-choice">Destroyer

 <div class='button-wrapper'>

 <button class='build-fleet inactive'>Build Fleet</button>

 </div>

 </div>

 <div class="ship-placer">

 <div class="board placer-board">

 <div class="labels">

 <div class="row-label">

 </div>

 <div class="column-label">

 </div>

 </div>

 <div class="playable-area">

Chapter 5: Ahoy! Sailing into Battle

91 | P a g e

 </div>

 </div>

 <div class='ships-to-place'>

 <h3>Ships to place</h3>

 </div>

 <div class="clear"></div>

 <div class="instructions">

 <p>Use 'WASD' keys to rotate pieces</p>

 </div>

 <div class='button-wrapper'>

 <button class="start inactive">Start game</button>

 </div>

 </div>

 <div class="game-area">

 <div class="board-wrap">

 <h1 class="hidden">BATTLESHIP</h1>

 <div class="single-board-wrap">

 <div class="board human-board">

 <div class="labels">

 <div class="row-label">

 </div>

 <div class="column-label">

 </div>

Chapter 5: Ahoy! Sailing into Battle

92 | P a g e

 </div>

 <div class="playable-area">

 </div>

 </div>

 <h2>Human Board</h2>

 </div>

 <div class="single-board-wrap">

 <div class="board ai-board">

 <div class="labels">

 <div class="row-label">

 </div>

 <div class="column-label">

 </div>

 </div>

 <div class="playable-area">

 </div>

 </div>

 <h2>Opponent Board</h2>

 </div>

 <div class="button-wrapper">

 <button class="new-game">New Game</button>

 <button class="stats hidden">Show Stats</button>

 </div>

 </div>

 <div class="info-area">

 <h2>Enemy ships remaining</h2>

 <div class="scoreboard">

Chapter 5: Ahoy! Sailing into Battle

93 | P a g e

 <div class="ships-left">

 </div>

 </div>

 <div class="gamelog-container">

 <h2>GAME LOG</h2>

 </div>

 </div>

 </div>

 <script src="js/jquery.min.js"></script>

 <script src="js/functions.js"></script>

 <script src="js/battleship.js"></script>

 </body>

</html>

We included the three JavaScript files in the HTML file. We added a jQuery file, which

we will discuss in the next chapter. The output of the preceding code will show you the

following screen:

You can click the Standard button to play the standard Battlefield or Custom button to

play a non-standard Battlefield.

Chapter 5: Ahoy! Sailing into Battle

94 | P a g e

If you select the Standard button, you will get the following screen:

Now, you can guess the position of the opponent's ship and click on the grid. There will

be a log panel on the right-hand side of the screen. You can also see how many and

which ships you have destroyed from the preceding panel of the game log panel.

If you select the Custom play, you will see the following screen:

After adding the five ships, you can play the game. You can add the same ship twice or

more, if required.

Chapter 5: Ahoy! Sailing into Battle

95 | P a g e

You can place your ships vertically or horizontally and click on the tiles to blow the

opponent's ship. You can click one tile at a time.

Summary

In this chapter, we built a complete game and played it. We also played a better version

of the game we have built. All you need to remember is that you must know the logic

behind all the code that we previously discussed. You are given the source code of the

better version of the game with this chapter. I hope that you will study the code and write

your own Battleship game. We used a jquery.js JavaScript file on our improved version

of the Battleship. The jquery.js file has a lot of lines of code (We will discuss this

in Chapter 6, Exploring the Benefits of jQuery).

If you master all the code that we discussed in this chapter, we can now move to the

next chapter.

https://subscription.packtpub.com/book/web-development/9781785287176/5/ch05lvl1sec35/summary

Chapter 6 : Exploring the Benefits of jQuery

96 | P a g e

Chapter 6. Exploring the Benefits of jQuery

If you have gone through the previous chapter, you probably have

implemented jQuery in your Battleship game. In this chapter, we will discuss about

jQuery in detail.

The jQuery library is a JavaScript framework. It was released in 2006. People used to

call it jSelect. We use jQuery in our websites so that we can work with JavaScript easily

and add effects to our web pages. You may think jQuery is different from JavaScript.

No! jQuery is just another JavaScript file. It is a very lightweight library that helps you to

decorate your web pages more easily with less coding.

We use jQuery due to the following advantages:

• It is open source; you can edit or modify its code if required

• It is a small library (about 150 KB file)

• The community support for jQuery is very strong; you can get help from the users

easily

• It is user-friendly and popular

• It supports cross-browsers

• It is openly developed; you can fix any bug or add features to it by editing the codes

• It helps the developers to build responsive sites by using AJAX

• It has built-in animation functions that help a developer to create animations in their

website

Installing jQuery

The question is where to find jQuery. Well, you can find it at http://jquery.com/. I

have also attached the file with this book. You can download it from there.

If you go to http://jquery.com/, you will see the following screen:

http://jquery.com/
http://jquery.com/
Highlight

Asynchronous JavaScript and XML

Chapter 6 : Exploring the Benefits of jQuery

97 | P a g e

Click the Download jQuery button. You will be redirected to the following page:

Chapter 6 : Exploring the Benefits of jQuery

98 | P a g e

There are two versions of jQuery: 1.x.x and 2.x.x. There are just a few differences

between these versions. The compressed version's code is not readable as the version

does not have blank spaces and comments; however, the uncompressed version is

clearly coded and formatted, it also has important comments to understand the code

and functions' work. If you want to learn how a function of jQuery works, I would suggest

you to go through the jQuery uncompressed version.

Throughout this chapter, we will use the 2.x.x version. The latest version

of 2.x.x is 2.2.0.

Note

You can download the compressed or uncompressed version of jQuery.

I'll advice you to use the compressed version as it is lightweight.

We will use the uncompressed version for this chapter so that you can study

the jquery.js and get a clear concept of how it works. After clicking Download the

uncompressed, development jQuery 2.2.0, you will see the jQuery library on your

browser. Click Ctrl + S on your keyboard to save the file, as shown in the following

screenshot:

Chapter 6 : Exploring the Benefits of jQuery

99 | P a g e

After downloading the jQuery, place it in your computer. For simplicity, rename it

to jquery.

Create a new HTML file in the same folder and include the jquery.js in your HTML

document by typing the following code in the <head></head> tags:

<script src="jquery.js"></script> Copy

To check whether your imported jquery.js is working, type the following code. I will

explain the code later:

<html>

 <head>

 <script type="text/JavaScript" src="jquery.js"></script>

Chapter 6 : Exploring the Benefits of jQuery

100 | P a g e

 </head>

 <script type="text/JavaScript">

 jQuery(document).ready(function()

 {

 jQuery('h1').click(function()

 {

 alert("jQuery is working!");

 } //click function ends here.

);

 } // ready function ends here.

);

 </script>

 <body>

 <h1>Click Here!</h1>

 </body>

</html> Copy

After opening the HTML file, click on Click Here! You will see the following screen:

It means your jQuery is working.

Let's discuss the code that we have written.

Chapter 6 : Exploring the Benefits of jQuery

101 | P a g e

Note

You can also install jQuery without downloading it. This kind of installation is

known as content delivery network (CDN) installation.

You need to add the following line to your HTML document and if you're connected

online, your browser will automatically load jQuery.

<script type = "text/javascript" src =

"http://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js"></scri

pt> Copy

Explaining the code

Now, let's discuss the code that we previously used. We used the following function in

our code:

jQuery(document).ready(function(){

//our codes.

}); Copy

This is a jQuery function that allows you to set your jQuery ready to be used. You can

replace jQuery with a dollar sign ($) as shown in the following:

$(document).ready(function(){

//our codes.

}); Copy

You need to think where you want to apply jQuery. We have written <h1>Click

Here!</h1> in our body tags. We wanted our Click Here! to do something when clicked

and that's why we added a click function similar to the following format:

Chapter 6 : Exploring the Benefits of jQuery

102 | P a g e

 jQuery('h1').click(function(){

 //our codes.

 }); Copy

The jQuery can be replaced with $ as earlier mentioned.

We added an alert function so that when we click on our text, there appears an alert

box.

Going deeper

Let's discuss jQuery functions/methods that we use frequently in detail.

All the methods should be written in the ready() function. Some of the commonly used

methods are as follows:

• Load

• Keyup

• Keydown

• Change

• Focus

• Blur

• Resize

• Scroll

The load() method

Using this method, you can load a file on your browser. Consider that you want to fetch

some text from a .txt file on your browser. You can do the following coding:

<html>

 <head>

 <script type="text/JavaScript" src="jquery.js"></script>

Chapter 6 : Exploring the Benefits of jQuery

103 | P a g e

 </head>

 <script>

 $(document).ready(function(){

 $("button").click(function(){

 $("#click").load("test.txt");

 });

 });

 </script>

 <body>

 <div id="click">

 Hello;

 </div>

 <button type="button" name="button">Click to replace "Hello" from

text file</button>

 </body>

</html> Copy

After clicking the button, the text in the click div will be changed to Congratulations!

You have loaded your file!!, as shown in the following:

AJAX function

request back-end server

Chapter 6 : Exploring the Benefits of jQuery

104 | P a g e

The keyup() and keydown() methods

Using this method, you can control your keyboard buttons' key-pressing. You can make

your browser do something when a key is pressed or not pressed. Consider that you

have a textbox and you want to take an input from there. When the keys are pressed,

you want your textbox to change to red color; otherwise the color should remain green.

You can do this by implementing/writing the following code:

<html>

 <head>

 <script type="text/JavaScript" src="jquery.js"></script>

 </head>

 <script>

 $(document).ready(function(){

 $("input").keydown(function(){

 $("input").css("background-color", "green");

 });

 $("input").keyup(function(){

 $("input").css("background-color", "red");

 });

 });

 </script>

 <body>

 Type Something: <input type="text">

 </body>

</html> Copy

Chapter 6 : Exploring the Benefits of jQuery

105 | P a g e

The change() method

To change some text, you can use this method by implementing the following code:

<html>

 <head>

 <script type="text/JavaScript" src="jquery.js"></script>

 </head>

 <script>

 $(document).ready(function(){

 $("input").change(function(){

 alert("The text has been changed.");

 });

 });

 </script>

 <body>

 Type Something: <input type="text">

 </body>

</html> Copy

Chapter 6 : Exploring the Benefits of jQuery

106 | P a g e

Your output will look similar to the following image:

The blur() and focus() methods

To make your text or button blurred or focused, you can implement the following code:

<html>

 <head>

 <script type="text/JavaScript" src="jquery.js"></script>

 </head>

 <script>

 $(document).ready(function(){

 $("button").blur(function(){

 alert("Your button is not focused!");

 });

 });

 </script>

 <body>

 <button type="button">CLick Me!</button>

 </body>

</html> Copy

Chapter 6 : Exploring the Benefits of jQuery

107 | P a g e

You can do this for the focus() method too, as follows:

The resize() method

If you want to see how many times your browser is resized, you can do the following on

your HTML document:

The scroll() method

You can add actions to the mouse scrolling using the following code:

<html>

 <head>

 <script src="jquery.js"></script>

 <script>

Chapter 6 : Exploring the Benefits of jQuery

108 | P a g e

 $(document).ready(function(){

 $("div").scroll(function(){

 $("span").text("You are scrolling!");

 });

 });

 </script>

 </head>

 <body>

 <div style="border:2px solid black;width:200px;

height:200px;overflow:scroll;">

 Cowards die many times before their deaths;

 The valiant never taste of death but once.

 Of all the wonders that I yet have heard,

 It seems to me most strange that men should fear;

 Seeing that death, a necessary end,

 Will come when it will come.

 </div>

 </body>

</html> Copy

When you scroll with your mouse, you can see the event that you created in

the scroll() function, as follows:

Chapter 6 : Exploring the Benefits of jQuery

109 | P a g e

Summary

The jQuery library is super fun to use and easy for new learners. All you have to do is

practice the methods and functions of jQuery. There are a lot of jQuery plugins online.

You can also download and install them to your web page. Using jQuery and its plugins,

you can beautifully decorate and code your site easily. The most interesting part of

jQuery, for me, is animation. I will explain how to animate things using jQuery in the next

chapter.

Chapter 7 : Introducing the Canvas

110 | P a g e

Chapter 7. Introducing the Canvas

In this chapter, we are going to learn about HTML canvas. An HTML canvas helps you

to draw, especially the graphics (for example, circles, squares, rectangles, and so on)

on your HTML page. The <canvas></canvas> tags are usually controlled by JavaScript.

Canvas can draw texts, which can also be animated. Let's see what we can do using

the HTML canvas.

Implementing canvas

To add canvas on your HTML page, you need to define the height and width of your

canvas in the <canvas></canvas> tags as shown in the following:

<html>

 <head>

 <title>Canvas</title>

 </head>

 <body>

 <canvas id="canvasTest" width="200" height="100" style="border:2px

solid #000;">

 </canvas>

 </body>

</html>

We have defined the canvas ID as canvasTest, which will be used to play with the

canvas. We used inline CSS on our canvas. The 2 px solid border is used to have a

better view of the canvas.

Adding JavaScript

Highlight

Chapter 7 : Introducing the Canvas

111 | P a g e

Now, we are going to add few lines of JavaScript for our canvas. We need to add our

JavaScript just after the <canvas></canvas> tags in the <script></script> tags.

Drawing a rectangle

To test our canvas, let's draw a rectangle in the canvas by typing the following code:

<script type="text/javascript">

 var canvas = document.getElementById("canvasTest"); //called our

canvas by id

 var canvasElement = canvas.getContext("2d"); // made our canvas 2D

 canvasElement.fillStyle = "black"; //Filled the canvas black

 canvasElement.fillRect(10, 10, 50, 50); //created a rectangle

</script>

In the script, we declared two JavaScript variables. The canvas variable is used to hold

the content of our canvas using the canvas ID, which we used in

our <canvas></canvas> tags. The canvasElement variable is used to hold the context of the

canvas. We assign black to fillstyle so that the rectangle that we want to draw turns

black when filled. We used canvasElement.fillRect(x, y, w, h); for the shape of the

rectangle. Where x is the distance of the rectangle from the x axis; y is the distance of

the rectangle from the y axis; and w and h are the width and height of the rectangle,

respectively.

The full code is as shown in the following:

<html>

 <head>

 <title>Canvas</title>

 </head>

Chapter 7 : Introducing the Canvas

112 | P a g e

 <body>

 <canvas id="canvasTest" width="200" height="100" style="border:2px

solid #000;">

 </canvas>

 <script type="text/javascript">

 var canvas = document.getElementById("canvasTest"); //called our

canvas by id

 var canvasElement = canvas.getContext("2d"); // made our canvas 2D

 canvasElement.fillStyle = "black"; //Filled the canvas black

 canvasElement.fillRect(10, 10, 50, 50); //created a rectangle

 </script>

 </body>

</html>

The output of the code is as follows:

Drawing a line

To draw a line in the canvas that you need to insert the following code in

your <script></script> tags:

Chapter 7 : Introducing the Canvas

113 | P a g e

<script type="text/javascript">

 var c = document.getElementById("canvasTest");

 var canvasElement = c.getContext("2d");

 canvasElement.moveTo(0,0);

 canvasElement.lineTo(100,100);

 canvasElement.stroke();

</script>

Here, canvasElement.moveTo(0,0); is used to have our line start from the (0,0) co-ordinate

of our canvas. The canvasElement.lineTo(100,100); statement is used to make the line

diagonal. The canvasElement.stroke(); statement is used to make the line visible. I

would suggest you to change the numbers

in canvasElement.lineTo(100,100); and canvasElement.moveTo(0,0); and see the changes

to your line drawn by canvas.

The following is the output of the code:

A quick exercise

1. Draw a line using canvas and JavaScript, which will be parallel to the y axis of the

canvas.

2. Draw a rectangle having 300 px height and 200 px width. Draw a line on the same

canvas, touching the rectangle.

Chapter 7 : Introducing the Canvas

114 | P a g e

Drawing a circle

To draw a circle in the canvas, you need to add the following code in

your <script></script> tags:

<script type="text/javascript">

 var c = document.getElementById("canvasTest");

 var canvasElement = c.getContext("2d");

 canvasElement.beginPath();

 canvasElement.arc(95,50,40,0,2*Math.PI);

 canvasElement.stroke();

</script>

Here, we used canvasElement.beginPath(); to start drawing the

circle, canvasElement.arc(95,50,40,0,2*Math.PI); for the shape of the circle,

and canvasElement.stroke(); to set the circle visible.

Note

The canvasElement.arc(95,50,40,0,2*Math.PI); statement is similar

to canvasElement.arc(x, y, r, sA, eA, ac);,

where x is the starting coordinate from x axis, y is the starting coordinate

from y axis, r is the radius of the circle, sA is the starting angle of the circle, eA is the

ending angle of the circle, and ac is the direction of the circle. Here, ac denotes

anticlockwise.

The output of our code will be the following image:

Chapter 7 : Introducing the Canvas

115 | P a g e

Draw linear gradient

Let's draw something new. We will draw a rectangle and make its color fade gradually.

Type the following code in your <script></script> tags:

<script type="text/javascript">

 var c = document.getElementById("canvasTest");

 var canvasElement = c.getContext("2d");

 // Create the gradient

 var grdient = canvasElement.createLinearGradient(0,0,100,0);

 grdient.addColorStop(0,"blue"); // here we added blue as our primary

color

 grdient.addColorStop(1,"white"); //here we used white as our secondary

color.

 // Fill with gradient

 canvasElement.fillStyle = grdient;

 canvasElement.fillRect(10,10,150,80);

</script>

We added canvasElement.createLinearGradient(0,0,100,0); to create the gradient or

fading. We

Chapter 7 : Introducing the Canvas

116 | P a g e

added grdient.addColorStop(0,"blue"); and grdient.addColorStop(1,"white"); to color

the rectangle.

The output of the code is as shown in the following image:

A quick exercise

1. Draw the following smiley face using HTML canvas. (Hint: you will have to draw

three full circles and a half circle. The trick is that you can draw the figure by

playing with the code of circle for the canvas.):

2. Draw a circle with a color gradient.

Let's make a clock!

We are going to draw an analog clock and make it work as a real clock. In your body

part of the HTML document, type the following code:

Chapter 7 : Introducing the Canvas

117 | P a g e

<canvas id="myclock" height="500" width="500"></canvas>

In your <script></script> tags, take the following variables:

Var canvas; // the clock canvas

var canvasElement; // canvas's elements

// clock settings

var cX = 0;

var cY = 0;

var radius = 150;

Here, cX and cY are the center coordinates of our clock. We took 150 px as the clock's

radius. You can increase or decrease it.

Then, we need to initialize the variables. Make an init(); function after defining the

preceding variables.

The function should look similar to the following:

function init() {

 canvas = document.getElementById("myclock");

 //Called the element to work on.

 canvasElement = canvas.getContext("2d");

 //Made the context 2d.

 cX = canvas.width / 2;

 // we divided by two to get the middle point of X-axis

 cY = canvas.height / 2;

 // we divided by two to get the middle point of Y-axis

 initTime(); //called the initTime() function.

Chapter 7 : Introducing the Canvas

118 | P a g e

 drawClock(); //Called the drawClock() function to draw the graphics.

 setInterval("animateClock()", 1000); // Made the animation for each

second. Here 1000 is equal to 1 second.

}

Let's initialize the second, minute, and hour hands of our clock:

function initTime() {

 date = new Date();

 hours = date.getHours() % 12; // Divided by 12 to make our clock 12

hours.

 minutes = date.getMinutes();

 seconds = date.getSeconds();

}

Here, date.getHours(), date.getMinutes(), and date.getSeconds() will return your

computer's time and save them on our variables.

Make another function that will animate our clock:

function animateClock() {

 //This function will help our 'second' hand to move after an interval.

 clearCanvas(); // This will clear the canvas

 refreshTime(); // This will refresh time after 1 second.

 drawClock(); // This will draw the clock.

}

We will write clearCanvas(), refreshTime(), and drawClock() now:

Chapter 7 : Introducing the Canvas

119 | P a g e

function clearCanvas() {

 canvasElement.clearRect(0, 0, canvas.width, canvas.height);

}

Here, canvasElement.clearRect(0, 0, canvas.width, canvas.height); will reset our

canvas after a definite time interval.

Our refreshTime() function should look as shown in the following:

function refreshTime() {

 seconds += 1;

 if (Math.floor((seconds / 60)) != 0) { //we divide seconds by 60 until

second is equal to zero.

 minutes += 1; // If 60 second is passed we increment minute by 1.

 seconds %= 60;

 }

 if (Math.floor((minutes / 60)) != 0) {

 hours += 1; //We increment hour by 1 after 60 minutes.

 minutes %= 60;

 }

}

We incremented our seconds variable in the refreshTime() function. Therefore, whenever

this function is called, our variable will be incremented by 1. Then, we have done two

conditional operations for our hours and minutes.

Now, let's draw the clock:

function drawClock() {

 drawClockBackground(); //This draws clock background.

 drawSecondsHand(); //This draws clock's second hand.

Chapter 7 : Introducing the Canvas

120 | P a g e

 drawMinutesHand(); //This draws clock's minute hand.

 drawHoursHand(); //This draws clock's hour hand.

}

We will write the drawClockBackground(), drawSecondsHand(), drawMinutesHand(),

and drawHoursHand() functions:

function drawClockBackground() {

 //this function will draw the background of our clock. We are

declaring few variables for mathematical purposes.

 var correction = 1/300;

 var shift_unit = 1/170;

 var shift_factor = 1/30;

 var angle_initial_position = 2;

 var angle_current_position_begin = 0;

 var angle_current_position_end = 0;

 var repeat = 60;

 var lineWidth = 10;

 for (var i=0; i < repeat; i+=1) {

 //These lines are written for making our clock error free with the

angle of the hands (hands' positions)

 angle_current_position_begin = angle_initial_position - (i *

shift_factor) - correction;

 angle_current_position_end = angle_current_position_begin +

shift_unit;

 if (i % 5 === 0)

 lineWidth = 20;

Chapter 7 : Introducing the Canvas

121 | P a g e

 else

 lineWidth = 10;

 drawArcAtPosition(cX, cY, radius,

angle_current_position_begin*Math.PI,

angle_current_position_end*Math.PI, false, lineWidth);

 }

 drawLittleCircle(cX, cY);

}

We performed some mathematical things in this function and wrote

the drawLittleCircle(cX, cY) function for a little circle on the center of our clock.

The function should look similar to the following:

function drawLittleCircle(cX, cY) {

 drawArcAtPosition(cX, cY, 4, 0*Math.PI, 2*Math.PI, false, 4);

}

Write the drawSecondsHand() function. This function will draw the second hand, as

follows:

function drawSecondsHand() {

 /* Simple mathematics to find the co ordinate of the second hand;

 You may know this: x = rcos(theta), y = rsin(theta). We used these

here.

 We divided the values n=by 30 because after 5 seconds the second

hand moves 30 degree.

 */

 endX = cX + radius*Math.sin(seconds*Math.PI / 30);

Chapter 7 : Introducing the Canvas

122 | P a g e

 endY = cY - radius*Math.cos(seconds*Math.PI / 30);

 drawHand(cX, cY, endX, endY);

}

Our drawMinutesHand() function should look as shown in the following. This function will

draw the minute hand of our clock, as follows:

function drawMinutesHand() {

 var rotationUnit = minutes + seconds / 60;

 var rotationFactor = Math.PI / 30;

 var rotation = rotationUnit*rotationFactor;

 var handLength = 0.8*radius;

 endX = cX + handLength*Math.sin(rotation);

 endY = cY - handLength*Math.cos(rotation);

 drawHand(cX, cY, endX, endY);

}

Now, let's see our drawHoursHand(); function. This function will draw the hour hand:

function drawHoursHand() {

 var rotationUnit = 5 * hours + minutes / 12;

 var rotationFactor = Math.PI / 30;

 var rotation = rotationUnit*rotationFactor;

 var handLength = 0.4*radius;

 endX = cX + handLength*Math.sin(rotation);

 endY = cY - handLength*Math.cos(rotation);

 drawHand(cX, cY, endX, endY);

}

Chapter 7 : Introducing the Canvas

123 | P a g e

We used a drawHand(); function in the preceding functions. Let's write the function, as

follows:

function drawHand(beginX, beginY, endX, endY) {

 canvasElement.beginPath();

 canvasElement.moveTo(beginX, beginY);

 canvasElement.lineTo(endX, endY);

 canvasElement.stroke();

 canvasElement.closePath();

}

Now, we are going to write the last function for our clock, as shown in the following

snippet:

function drawArcAtPosition(cX, cY, radius, start_angle, end_angle,

counterclockwise, lineWidth) {

 canvasElement.beginPath();

 canvasElement.arc(cX, cY, radius, start_angle, end_angle,

counterclockwise);

 canvasElement.lineWidth = lineWidth;

 canvasElement.strokeStyle = "black";

 canvasElement.stroke();

 canvasElement.closePath();

}

The full code of our clock should look similar to the following code:

<html>

 <head>

 <script type="text/javascript">

Chapter 7 : Introducing the Canvas

124 | P a g e

 var canvas;

 var canvasElement;

 // clock settings

 var cX = 0;

 var cY = 0;

 var radius = 150;

 // time settings

 var date;

 var hours;

 var minutes;

 var seconds;

 function init() {

 canvas = document.getElementById("myclock");

 canvasElement = canvas.getContext("2d");

 cX = canvas.width / 2;

 cY = canvas.height / 2;

 initTime();

 drawClock();

 setInterval("animateClock()", 1000);

 }

 // get your system time

 function initTime() {

Chapter 7 : Introducing the Canvas

125 | P a g e

 date = new Date();

 hours = date.getHours() % 12;

 minutes = date.getMinutes();

 seconds = date.getSeconds();

 }

 // animate the clock

 function animateClock() {

 clearCanvas();

 refreshTime();

 drawClock();

 }

 // clear the canvas

 function clearCanvas() {

 canvasElement.clearRect(0, 0, canvas.width, canvas.height);

 }

 // refresh time after 1 second

 function refreshTime() {

 seconds += 1;

 if (Math.floor((seconds / 60)) != 0) { minutes += 1; seconds %=

60; }

 if (Math.floor((minutes / 60)) != 0) { hours += 1; minutes %=

60; }

 }

 // draw or redraw Clock after time refresh function is called

Chapter 7 : Introducing the Canvas

126 | P a g e

 function drawClock() {

 drawClockBackground();

 drawSecondsHand();

 drawMinutesHand();

 drawHoursHand();

 }

 function drawHand(beginX, beginY, endX, endY) {

 canvasElement.beginPath();

 canvasElement.moveTo(beginX, beginY);

 canvasElement.lineTo(endX, endY);

 canvasElement.stroke();

 canvasElement.closePath();

 }

 // draw Hand for seconds

 function drawSecondsHand() {

 endX = cX + radius*Math.sin(seconds*Math.PI / 30);

 endY = cY - radius*Math.cos(seconds*Math.PI / 30);

 drawHand(cX, cY, endX, endY);

 }

 // draw Hand for minutes

 function drawMinutesHand() {

 var rotationUnit = minutes + seconds / 60;

 var rotationFactor = Math.PI / 30;

 var rotation = rotationUnit*rotationFactor;

 var handLength = 0.8*radius;

Chapter 7 : Introducing the Canvas

127 | P a g e

 endX = cX + handLength*Math.sin(rotation);

 endY = cY - handLength*Math.cos(rotation);

 drawHand(cX, cY, endX, endY);

 }

 // draw Hand for hours

 function drawHoursHand() {

 var rotationUnit = 5 * hours + minutes / 12;

 var rotationFactor = Math.PI / 30;

 var rotation = rotationUnit*rotationFactor;

 var handLength = 0.4*radius;

 endX = cX + handLength*Math.sin(rotation);

 endY = cY - handLength*Math.cos(rotation);

 drawHand(cX, cY, endX, endY);

 }

 function drawClockBackground() {

 var correction = 1/300;

 var shift_unit = 1/170;

 var shift_factor = 1/30;

 var angle_initial_position = 2;

 var angle_current_position_begin = 0;

 var angle_current_position_end = 0;

 var repeat = 60;

 var lineWidth = 10;

 for (var i=0; i < repeat; i+=1) {

Chapter 7 : Introducing the Canvas

128 | P a g e

 angle_current_position_begin = angle_initial_position - (i *

shift_factor) - correction;

 angle_current_position_end = angle_current_position_begin +

shift_unit;

 if (i % 5 == 0) lineWidth = 20;

 else lineWidth = 10;

 drawArcAtPosition(cX, cY, radius,

angle_current_position_begin*Math.PI,

angle_current_position_end*Math.PI, false, lineWidth);

 }

 drawLittleCircle(cX, cY);

 }

 function drawArcAtPosition(cX, cY, radius, start_angle, end_angle,

counterclockwise, lineWidth) {

 canvasElement.beginPath();

 canvasElement.arc(cX, cY, radius, start_angle, end_angle,

counterclockwise);

 canvasElement.lineWidth = lineWidth;

 canvasElement.strokeStyle = "black";

 canvasElement.stroke();

 canvasElement.closePath();

 }

 function drawLittleCircle(cX, cY) {

 drawArcAtPosition(cX, cY, 4, 0*Math.PI, 2*Math.PI, false, 4);

 }

Chapter 7 : Introducing the Canvas

129 | P a g e

 </script>

 </head>

 <body onload="init()">

 <canvas id="myclock" height="500" width="500"></canvas>

 </body>

</html>

If you can see the output of your code as the following image, then congratulations! You

successfully created your HTML clock using canvas:

Summary

In this chapter, we have learned the basics of HTML canvas. I hope that you can now

draw anything using the HTML canvas. You may have played online games; the

components of most of them are drawn using HTML canvas. Therefore, if you want to

develop your own web applications or games, you need to learn about canvas. You can

easily code to draw and animate the shapes using JavaScript.

Chapter 7 : Introducing the Canvas

130 | P a g e

In the next chapter, we will develop a game called Rat-man using the HTML canvas.

Before starting Chapter 8, Building Rat-man!, I hope that you've learned a lot about

HTML canvas through this chapter. If you've, let's develop our game now.

https://subscription.packtpub.com/book/web-development/9781785287176/7/ch07lvl1sec49/summary

Chaapter 8 : Tidying up Your Code Using OOP

131 | P a g e

Chapter 8. Tidying up Your Code Using OOP

In this chapter, we are going to learn about object-oriented programming (OOP)

and discuss the code of the famous game, Hangman.

"OOP is a programming paradigm that uses abstraction to create models based on the

real world. OOP uses several techniques from previously established paradigms,

including modularity, polymorphism, and encapsulation." or "OOP languages typically

are identified through their use of classes to create multiple objects that have the same

properties and methods."

You probably have assumed that JavaScript is an object-oriented programming

language. Yes, you are absolutely correct. Let's see why it is an OOP language. If a

computer programming language has the following few features, we call it object

oriented:

• Inheritance

• Polymorphism

• Encapsulation

• Abstraction

Before going any further, let's discuss objects. We create objects in JavaScript in the

following manner:

var person = new Object();

person.name = "Harry Potter";

person.age = 22;

person.job = "Magician";

We created an object for a person. We added few properties of person.

If we want to access any of the property of the object, we need to call the property.

Consider that you want to have a popup of the name property of the

preceding person object. You can do this with the following method:

Chaapter 8 : Tidying up Your Code Using OOP

132 | P a g e

person.callName = function(){

 alert(this.name);

};

We can write the preceding code as shown in the following:

var person = {

 name: "Harry Potter",

 age: 22,

 job: "Magician",

 callName: function(){

 alert(this.name);

 }

};

Inheritance in JavaScript

To inherit means derive something (such as, characteristics, quality, and so on) from

one's parents or ancestors. In programming languages, when a class or object is based

on another class or object in order to maintain the same behavior of the parent class or

object is known as inheritance.

We can also say that this is a concept of gaining properties or behaviors of something

else.

Suppose, X inherits something from Y; it is like X is a type of Y.

JavaScript occupies the inheritance capability. Let's take a look at an example. A bird

inherits from an animal as a bird is a type of animal. Therefore, a bird can do the same

thing that an animal does.

Chaapter 8 : Tidying up Your Code Using OOP

133 | P a g e

This kind of relationship in JavaScript is a little complex and needs a syntax. We need

to use a special object called prototype, which assigns the properties to a type. We

need to remember that only function has prototypes. Our Animal function should look

similar to the following:

function Animal(){

//We can code here.

};

To add a few properties of the function, we need to add a prototype as shown in the

following:

Animal.prototype.eat = function(){

 alert("Animal can eat.");

};

Let's create prototypes for our Bird function. Our function and prototypes should look

similar to the following:

function Bird(){

};

Bird.prototype = new Animal();

Bird.prototype.fly = function(){

 alert("Birds can fly.");

};

Bird.prototype.sing = function(){

 alert("Bird can sing.");

};

The result of the prototypes and function is that any Bird that you create will have the

properties of Animal and Bird. However, if you create Animal, this will only have the

properties of Animal. The properties of Animal are inherited by Bird.

Chaapter 8 : Tidying up Your Code Using OOP

134 | P a g e

Therefore, we can say that JavaScript has inheritance property.

Encapsulation in JavaScript

In OOP, encapsulation is one of the most important concepts that allows an object to

group the members of public and private classes under a single name. We use

encapsulation to protect our classes against accidental or willful folly. Encapsulation

means to enclose something in or as if something is in a capsule.

Now, we will see whether JavaScript supports encapsulation. If it does, we can say that

JavaScript is an OOP language. Let's take a look at the following example:

var person = {

 "name" : "Harry Potter",

 "age" : 22,

};

alert(person.name);

person.name = "John";

alert(person.name);

If we run this on the console. The first alert box will print the following image:

Chaapter 8 : Tidying up Your Code Using OOP

135 | P a g e

We changed the variable name to John. Therefore, the second alert box will be similar to

the following image:

Chaapter 8 : Tidying up Your Code Using OOP

136 | P a g e

What would happen if we accidently assigned a number to the name variable?

Assigning a number to the name variable is perfectly acceptable. As far as JavaScript is

concerned, a variable can accept any type of data as its value. However, we don't want

a number in the place of a name. What do we do? We can use JavaScript's

encapsulation property, as follows:

var person = function () {

 var Name = "Harry Potter";

 var reg = new RegExp(/\d+/);

 return {

 "setName" : function (newValue) {

 if(reg.test(newValue)) {

 alert("Invalid Name");

 }

Chaapter 8 : Tidying up Your Code Using OOP

137 | P a g e

 else {

 Name = newValue;

 }

 },

 "getName" : function () {

 return Name;

 }

 };

}();

alert(person.getName()); // Harry potter

person.setName("John");

alert(person.getName()); // John

person.setName(42); // Invalid Name; the name is not changed.

person.Name = 42; // Doesn't affect the private Name variable.

alert(person.getName()); // John is printed again.

Now, if we run the above code on console, the first output will show a popup with Harry

Potter as we only called the getName() function. The getName() function has an initial

value, which is Harry Potter:

Chaapter 8 : Tidying up Your Code Using OOP

138 | P a g e

The second output will be as follows as we changed the Name property

of person to John and again called the getName() function:

The third output will be as shown in the following as we tried to push a number to a

string variable. A name cannot be an integer, therefore, Invalid Name popped up as we

had a condition under the if statement:

Chaapter 8 : Tidying up Your Code Using OOP

139 | P a g e

The fourth output will be as shown in the following as the number was not added to the

person's Name property. Therefore, we will get the last data that we pushed to

the Name property:

We can now confirm that JavaScript supports encapsulation.

JavaScript also supports polymorphism and abstraction. If you would like to read

about them, you can refer to the following link:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-

Oriented_JavaScript

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript

Chaapter 8 : Tidying up Your Code Using OOP

140 | P a g e

Let's do something fun. You may have heard of the game called Hangman. We'll

discuss the OOP in that game. First, let's introduce you to the game.

The player needs to guess a word. If he can guess the word correctly, he is safe;

otherwise, he will be hanged. Take a look at the following image to get the clear idea

about the game, as follows:

Dissecting Hangman

There are two folders and an HTML file for the Hangman game. The two folders are

named as css and js. The index.html HTML file should contain the following code:

<html lang="en" ng-app="hangman">

 <head>

 <title>Hangman</title>

Chaapter 8 : Tidying up Your Code Using OOP

141 | P a g e

 <link rel="stylesheet" href="css/styles.css">

 <script src="js/angular.min.js"></script>

 </head>

 <body ng-controller="StartHangman">

 <p>Hangman</p>

 <svg width="400" height="400">

 <rect ng-show="failedGuess.length >= 1" x="0" y="0" width="40"

height="400"></rect>

 <rect ng-show="failedGuess.length >= 2" x="40" y="20" width="200"

height="40"></rect>

 <rect ng-show="failedGuess.length >= 3" x="173" y="50" width="4"

height="100"></rect>

 <circle ng-show="failedGuess.length >= 3" cx="175" cy="120"

r="40"></circle>

 <line ng-show="failedGuess.length >= 4" x1="175" y1="150" x2="175"

y2="185" style="stroke:rgb(0,0,0)" stroke-width="10"></line>

 <line ng-show="failedGuess.length >= 4" x1="175" y1="180" x2="100"

y2="240" style="stroke:rgb(0,0,0)" stroke-width="10"></line>

 <line ng-show="failedGuess.length >= 5" x1="175" y1="180" x2="250"

y2="240" style="stroke:rgb(0,0,0)" stroke-width="10"></line>

 <line ng-show="failedGuess.length >= 6" x1="175" y1="180" x2="175"

y2="265" style="stroke:rgb(0,0,0)" stroke-width="10"></line>

 <line ng-show="failedGuess.length >= 7" x1="175" y1="260" x2="120"

y2="340" style="stroke:rgb(0,0,0)" stroke-width="10"></line>

 <line ng-show="failedGuess.length >= 8" x1="175" y1="260" x2="230"

y2="340" style="stroke:rgb(0,0,0)" stroke-width="10"></line>

 </svg>

Chaapter 8 : Tidying up Your Code Using OOP

142 | P a g e

 <div ng-show="stage == 'initial'">

 <h2>Please enter your secret words:</h2>

 <input type="text" ng-model="secretWords" autofocus ng-

keyup="$event.keyCode == 13 ? startGame() : null">

 <button ng-click="startGame()">Enter</button>

 </div>

 <div ng-show="stage == 'play'">

 <h1>{{ answer }}</h1>

 <h2>Failed guess ({{ failedGuess.length }}) = {{

failedGuess}}</h2>

 <input type="text" ng-model="charGuess" id="char-guess" ng-

keyup="$event.keyCode == 13 ? guess(charGuess) : null"

placeholder="Guess a letter">

 <button ng-click="guess(charGuess)">Enter</button>

 </div>

 <div ng-show="stage == 'won'">

 <h1>You Win! :)</h1>

 <h2>That's right, the secret words is {{ secretWords }}</h2>

 <p>Press F5 to replay</p>

 </div>

 <div ng-show="stage == 'lost'">

 <h1>You Lose! :(</h1>

 <h2>The secret word is {{ secretWords }}</h2>

Chaapter 8 : Tidying up Your Code Using OOP

143 | P a g e

 <p>Press F5 to replay</p>

 </div>

 <script src="js/hangman.js"></script>

 </body>

</html>

The css folder should have a styles.css file. The styles.css file should contain the

following code:

body {

 font-family: monospace;

 text-align: center;

 font-size: 16px;

 line-height: 1.40;

}

input[type="text"] {

 padding: 5px;

 font-family: monospace;

 height: 30px;

 font-size: 1.8em;

 background-color: #fff;

 border: 2px solid #000;

 vertical-align: bottom;

}

svg {

 margin: 0 0 30px;

Chaapter 8 : Tidying up Your Code Using OOP

144 | P a g e

}

button {

 cursor: pointer;

 margin: 0;

 height: 44px;

 background-color: #fff;

 border: 2px solid #000;

}

There should be two JavaScript files in the js folder, angular.min.js and hangman.js.

The angular.min.js file is a framework. You can download it

from https://angularjs.org/ or it is available with the code bundle of the book.

The hangman.js file should have the following code:

var hangman = angular.module('hangman', []).controller('StartHangman',

StartHangman);

 function StartHangman($scope, $document) {

 $scope.stage = "initial";

 $scope.secretWords = "";

 $scope.answer = "";

 $scope.failedGuess = [];

 var hasWon = function() {

 var foundDash = $scope.answer.search(/-/);

 return (foundDash == -1);

 }

 var hasLost = function() {

 return ($scope.failedGuess.length >= 8);

https://angularjs.org/

Chaapter 8 : Tidying up Your Code Using OOP

145 | P a g e

 }

 $scope.startGame = function() {

 $scope.secretWords = $scope.secretWords.toLowerCase();

 for(i in $scope.secretWords) {

 $scope.answer += $scope.secretWords[i] == ' ' ? ' ' : '-';

 }

 $scope.stage = "play"

 }

 $scope.guess = function(ch) {

 ch = ch.toLowerCase();

 $scope.charGuess = "";

 if(ch.length != 1) {

 if(ch.length > 1) {

 alert("Please only enter one character at a time");

 }

 return ;

 }

 /* If ch is already in the failed guess list */

 for(i in $scope.failedGuess) {

 if(ch == $scope.failedGuess[i]) return ;

 }

 /* Check if it's part of the answer */

 var found = false;

 $scope.answer = $scope.answer.split(""); /* convert to array of char

*/

 for(i in $scope.secretWords) {

 if($scope.secretWords[i] === ch) {

Chaapter 8 : Tidying up Your Code Using OOP

146 | P a g e

 found = true;

 $scope.answer[i] = ch;

 }

 }

 $scope.answer = $scope.answer.join(""); /* convert back to string */

 if(!found) {

 $scope.failedGuess.push(ch);

 }

 if(hasWon()) {

 $scope.stage = "won";

 }

 if(hasLost()) {

 $scope.stage = "lost";

 }

 }

}

Let's discuss the code.

We used var hangman = angular.module('hangman', []).controller('StartHangman',

StartHangman); to import our angular.min.js file and start controlling the rest of our

game's code.

We wrote a StartHangman($scope, $document) {} function, where we will write our code.

We passed two variables, $scope and $document, from our angular.min.js file.

We initialized few variables, as follows:

$scope.stage = "initial";

$scope.secretWords = "";

Chaapter 8 : Tidying up Your Code Using OOP

147 | P a g e

$scope.answer = "";

$scope.failedGuess = [];

We wrote two functions for winning and losing the game, as follows:

var hasWon = function() {

 var foundDash = $scope.answer.search(/-/);

 return (foundDash == -1);

}

var hasLost = function() {

 return ($scope.failedGuess.length >= 8);

}

We have fixed our number of guesses here. Then, we wrote a function to start our

game. We made an object and used the inheritance property of JavaScript, as shown in

the following:

$scope.startGame = function() {

 $scope.secretWords = $scope.secretWords.toLowerCase();

 for(i in $scope.secretWords) {

 $scope.answer += $scope.secretWords[i] == ' ' ? ' ' : '-';

 }

 $scope.stage = "play"

}

We took an input from the player in order to store as our secret word.

The prompt page of the game will look similar to the following image:

Chaapter 8 : Tidying up Your Code Using OOP

148 | P a g e

Then, our most important function, $scope.guess = function(ch){}, was introduced. We

passed a character to the function and checked whether it matches any letters entered

by the player with the secret word.

Summary

In this chapter, you learned the characteristics of an OOP language. We also saw the

uses of the OOP characteristics in the famous game, Hangman! I hope you enjoyed

creating and playing Hangman. We will see the possibilities of JavaScript in the next

and final chapter of this book.

